
Ardiuno I2C
Shawn Hagler

EEL-4713
Florida State University

Panama City, United States
sth20u@fsu.edu

Jaehyun Lee
EEL-4713

Florida State University
Panama City, United States

jl21bd@fsu.edu

ABSTRACT

The integration of Arduino and the Inter-integrated Cir-
cuit (I2C) protocol presents an efficient and minimalistic
approach to complex electronic project development. This
paper explores the Arduino platform, focusing on its open-
source environment, programming structure, and the Integrated
Development Environment (IDE). It highlights the procedural
distinction and function of the setup() and loop() constructs
in Arduino programming. Furthermore, we discuss the im-
plementation of the I2C protocol through the Wire library,
emphasizing its importance in simplifying device connectivity
and the ease of incorporation into Arduino projects. Results
from a demonstration project involving an Arduino Uno R3
as a peripheral device and an Arduino Nano as a controller
illustrate the practical application and effectiveness of I2C
communication through a simple LED control task.

I. INTRODUCTION

The Arduino ecosystem represents a paradigm shift in the
way individuals from various backgrounds approach electron-
ics and embedded systems. Initially conceived as a tool for
artists and designers to create interactive prototypes without a
steep learning curve in electronics, Arduino’s reach has exten-
sively permeated the spheres of education, hobbyist projects,
and professional product development. Its open-source hard-
ware and software philosophy empowers users to contribute,
modify, and personalize their experiences, which not only
democratizes access to technology but also fosters a global
community of innovation. At the heart of the Arduino platform
is the pairing of accessible hardware, consisting of a variety
of microcontroller boards, with user-friendly software, namely,
the Arduino Integrated Development Environment (IDE). This
environment is unique in its approach—a confluence of sim-
plicity and functionality, offering a low barrier of entry for
novices without sacrificing the depth required by advanced
users. Through this IDE, users can write, validate, compile,
and upload code to their Arduino hardware.

Delving deeper into the inner workings of the Arduino
programming model, one encounters the structural foundation
of every Arduino sketch—the setup() and loop() functions.
This dichotomy establishes a clear and intuitive framework for
controlling the flow of the program. The setup() function is
called once at the beginning of a sketch; it is the initialization
phase where configurations such as pin modes, libraries, and

communications protocols are defined. In stark contrast, the
loop() function encapsulates the dynamic portion of the sketch,
where sensory data is read, logic is processed, and output
is generated in a perpetual cycle. Together, they embody a
balance of preparation and execution that streamlines the pro-
gramming process. Yet, the prowess of Arduino does not cease
at the level of individual board programming. Connected sys-
tems and the burgeoning field of the Internet of Things (IoT)
necessitate communication protocols that can link together
multiple devices efficiently. It is here that the Inter-integrated
Circuit (I2C) protocol takes center stage, bringing with it a
practical, two-wire solution for serial communication. The I2C
protocol is masterfully integrated into the Arduino platform
through the Wire library, a staple in Arduino’s communication
toolkit. With minimal wiring—using only a Serial Data Line
(SDA) and a Serial Clock Line (SCL)—multiple devices can
connect to a single controller. Each device on the I2C bus can
be individually addressed by the controller, soliciting data or
issuing commands as needed. The beauty of the I2C protocol
lies in its ability to handle complex communication scenarios
with relative ease, all while conserving valuable input/output
(I/O) pins on the Arduino microcontroller.

Exploring the Wire library reveals a suite of functions that
abstract away the intricacies of the I2C protocol. These func-
tions—read(), write(), and onReceive()—provide a stream-
lined interface for transmitting and receiving data, registering
callbacks, and managing the interactions between devices.
Significantly, this allows users to focus on the higher-level
aspects of their projects without being bogged down by the
low-level mechanics of device communication. To illustrate
the practical application of these concepts, this paper describes
a demonstration project in which an Arduino Uno R3, acting
as a peripheral device, and an Arduino Nano, serving as the
controller, communicate over an I2C connection. The nuances
of this interaction are examined, and the performance of the
Arduino system, in conjunction with the I2C protocol, is
evaluated through the simple yet illustrative task of controlling
an LED’s blinking pattern. In expanding on the significance
of Arduino and I2C, this introduction has set the stage for
a comprehensive exploration of an ecosystem that has not
only revolutionized how we approach embedded systems but
also continues to be at the vanguard of user-centric design
in electronics. The subsequent sections will delve into the
specific architectural and technical aspects, the related work



in the field, the project’s outcomes, and the avenues for future
exploration, painting a complete picture of Arduino’s integral
role in the landscape of modern electronics and communica-
tion.

II. EXISTING WORKS

Prior studies have documented the versatility of the Arduino
platform and its applicability to a diverse range of projects.
The literature shows a wealth of information on the use of
the Arduino IDE and programming syntax for various appli-
cations. Past work has also focused on the integration of I2C
in microcontroller-based systems, often highlighting the Wire
library’s role in abstracting the complexities of the protocol.
Comparisons with other communication protocols such as SPI
and UART have also been documented to underscore the
benefits of using I2C in certain scenarios.

III. IMPLEMENTATION

A. Ardiuno Programming

The setup and loop() functions are essential in Arduino
programming. The setup() function is responsible for initial-
izing the environment and preparing for the main program,
while the loop() function contains the actual main program
functionalities. By separating the initialization and core func-
tionalities, the Arduino code becomes easier to maintain and
modify, enabling reusability of functions and clearer separation
of concerns. It’s important to carefully handle delays in the
loop in order to prevent blocking the entire program, especially
if multi-threading or other parallel processing is anticipated.[3]

The setup() function is called once at the beginning of the
program and is used to initialize variables, configure initial
settings, set up communication protocols like Serial, specify
pin modes for digital pins, and initialize hardware components
such as sensors or actuators. Any time-consuming setup opera-
tions, such as waiting for sensor stabilization, are also included
in the setup() function. Its primary purpose is to prepare
the environment for the main program functionalities. It’s
important to focus the setup() function solely on initialization
and to avoid executing core program functionalities within it.
On the other hand, the loop() function runs continuously after
the setup() function has finished its execution. It contains the
main program functionalities and is continuously executed in
a loop. Variables declared inside the loop() function are only
valid within the loop, with their values being lost when the
loop ends. To preserve data between loops, variables should
be declared in a more global scope. The last line of the
loop() function is followed by the first line, allowing for a
continuous flow of the program. [3] As shown in the figure
1, setup() function is called once within the main() function
of the Arduino program, then the loop() function is running
consistently. Within the loop it is also consistently checking
for the serial event.

Figure 2 shows the SerialEvent() function which is called
at the end of the loop() function when data is available. It can
use Serial.read() to capture the data.

Fig. 1. main() function located in main.cpp file in the core directory of
Arduino program packages

Fig. 2. The serialEventRun() function located in the HardwareSerial.cpp

B. I2C

The Inter-integrated circuit (I2C) protocol is a useful way
to add complex features to Arduino projects without adding
complexity to wiring. It allows connecting multiple peripheral
devices with just a few wires, such as sensors, displays, and
motor drivers. The I2C protocol involves using two lines to
send and receive data: a serial clock pin (SCL) and a serial
data pin (SDA). The controller sends out instructions through
the I2C bus on the data pin (SDA), and the instructions are
prefaced with the address, so that only the correct device
listens. Each device in the I2C bus is functionally independent
from the controller, but will respond with information when
prompted by the controller. Because the I2C protocol allows
for each enabled device to have its own unique address, and
for both the controller and peripheral devices to take turns
communicating over a single line, it is possible for an Arduino
board to communicate with many devices or other boards using
just two pins on the microcontroller. The Wire library in the
Arduino ecosystem handles the complex aspects of the I2C
protocol, making it easy for users to implement and use I2C
devices in their projects. [4]

C. Wire Library

The Wire library in Arduino is used for communication with
I2C devices. I2C, or Inter-Integrated Circuit, is a serial com-
munication protocol used to connect multiple microcontrollers



and peripheral devices to the same bus. The Wire library
provides functions for transmitting and receiving data over the
I2C bus. One key feature of the Wire library is that it provides
a consistent interface for communication with I2C devices,
making it easier to work with different I2C components. It
allows for easy integration and communication with various
sensors, displays, and other I2C devices commonly used in
Arduino projects. Additionally, the Wire library can be used
to communicate with multiple I2C devices connected to the
same bus, by addressing each device with its unique 7-bit
address. The library’s implementation also includes a 32-byte
buffer for communication, and any communication should stay
within this limit to ensure data integrity. [5] Key functions that
are used in this project are write(), read(), and onReceive()
functions. The write() function in the Wire library is used to
send data from a peripheral device to a controller device or to
queue bytes for transmission from a controller to a peripheral
device. It can take different parameters, including a single byte
value, a string to be sent as a series of bytes, or an array of data
to be sent as bytes. The length parameter specifies the number
of bytes to transmit. The function returns the number of bytes
written, although this value is optional and does not need to
be read. Figure 4 shows that the write() function calls the
twi transmit() function the parameters of (const uint8 t* data,
uint8 t length) and figure 5 contains the function definition
of the twi transmit() function which writes the data to the
transmit buffer (txBuffer).

Fig. 3. TwoWire class, data members and member functions

Fig. 4. write() function definition

The read() function in the wire library is used to read a byte
that was transmitted from a controller device to a peripheral
device. This function inherits from the Stream utility class and
has no parameters. It simply returns the next byte received
from the communication.

Fig. 6. read() function definition

The onReceive() function in the wire library is used to
register a function that will be called when a peripheral device
receives a transmission from a controller device. The syntax
for using this function is Wire.onReceive(handler), where
the parameter ’handler’ is the function that will be called
when data is received. This function should take a single int
parameter, which represents the number of bytes read from
the controller device, and should return nothing. There is no
return value for this function.

D. I2C Connection

For this project Arduino Uno R3 and Arduino Nano are
used to perform the I2C connection. Arduino Nano being the
controller device and Arduino Uno R3 being the peripheral



Fig. 7. onReceive() function definition

Fig. 8. onReceiveService() function definition

device. For both of the devices the I2C pins are located in A4
(SDA) and A5 (SCL). Figure 9 shows the I2C connection of
those two devices.

Fig. 9. Arduino Uno R3 and Arduino Nano I2C connection

Fig. 10. Arduino code for the controller device

As shown in the figure 10, the Arduino Nano is continuously
sending an integer value from 0 to 5 with a delay of 500 ms.

Figure 11 shows that the Arduino Nano R3 receives the
integer send from the Arduino Nano and blinks the LED for

Fig. 11. Arduino code for the peripheral device

200ms if the integer received is 0 and for 400 ms if the integer
received is 3.

Fig. 12. LED controlled by the Arduino Uno R3

IV. RESULTS

The demonstration project aimed at showcasing the imple-
mentation and functionality of the I2C protocol within the
Arduino environment yielded substantial insights. Utilizing an
Arduino Uno R3 as the peripheral device and an Arduino
Nano as the controller, the performance of their I2C commu-
nication via the Wire library was meticulously evaluated. The
controller device (Arduino Nano) was programmed to transmit
a sequence of integer values ranging from 0 to 5, with a pause
of 500 milliseconds between each transmission. This simulates
a simplified control signal that might be used in a larger, more
complex system to issue commands or trigger events. The
code for the controller device was carefully crafted to ensure
stable and repetitive transmission of these control integers,
leveraging the Wire library’s write() function to queue the data
for transmission. In the counterpart setup, the peripheral device



(Arduino Uno R3) was designed to receive the incoming
integers and perform a conditional response depending on
the value. The key values of interest, 0 and 3, were set to
trigger LED blinking on the Uno for 200 milliseconds and
400 milliseconds, respectively. Such conditional behavior is
representative of a typical scenario where a device responds to
discrete signals with varied outputs. Throughout the duration
of the demonstration, the connection between Arduino Uno
R3 and Arduino Nano exhibited high reliability. Data integrity
was verified at each transition, with the LED blink responses
corresponding accurately to the transmitted integer values. No
transmission errors or missed integers were recorded, which
underscores the stability of the I2C communication via the
Wire library. A critical observation was the ease and correct-
ness of the implementation of the onReceive() function within
the Wire library. As data arrived at the peripheral device, the
corresponding callback function was executed without fail,
effectively handling the incoming information and initiating
the appropriate response in the form of LED blinks. Through
consistent observation and logging, the system demonstrated
seamless interfacing between the controller and peripheral de-
vice. The Wire library’s functions for data transmission (write)
and reception (read), along with the registering of the receive
event handler (onReceive), performed as documented without
requiring additional troubleshooting or complex configuration.
In conclusion, the results of this demonstration project emphat-
ically validate the Arduino platform and the Wire library as
robust tools for implementing I2C communication. The Wire
library’s functionality effectively abstracted the complexity of
I2C transactions, enabling novice and expert users alike to
deploy interactions between microcontrollers with minimal
setup and reliable performance. These results affirm the Wire
library’s practicality in facilitating microcontroller communi-
cation and highlight the potential for Arduino-based projects
to integrate multiple devices in a simple, effective manner.

V. CONCLUSION

The exploration of interfacing Arduino boards via I2C, as
examined in this paper, established the Arduino platform and
Wire library as potent resources for developing interconnected
microcontroller systems. Within the electronics community,
the utility and reliability of the Arduino ecosystem are often
touted, and the results of the demonstration project lend further
credence to these claims. By employing an Arduino Uno R3
and Arduino Nano to illustrate a straightforward yet illustrative
application of I2C communication, we were able to demon-
strate the seamless integration and functionality of these tools.
Our analysis focused on the ease of implementing I2C using
the Wire library, the successful transmission of data between
a controller and peripheral device, and the accurate execution
of conditional behaviors on the peripheral device. Throughout
the project, the robustness of the I2C protocol within the
Arduino environment was made evident—the designed system
was not only stable but also maintained data integrity without
fail across all tests.

The applicability of the Arduino and I2C protocol extends
beyond the boundaries of hobbyist tinkering; it can serve as a
foundation for educational purposes, enabling students to grasp
complex electronic concepts through hands-on experience.
Moreover, it paves the way for professionals to prototype
rapidly and iterate designs without delving into the intricacies
of lower-level embedded systems programming. The success
of our demonstration project, characterized by a noticeable
lack of complexity and high reliability, showcases the potential
for Arduino-based I2C applications across a spectrum of uses,
including but not limited to IoT devices, sensor networks, and
robotic controls. Moving forward, the durability, affordability,
and accessibility of Arduino, coupled with the flexibility and
simplicity of the I2C protocol, set the stage for continued
innovation and expansion in the realm of digital electronics.
By furthering user education and creating more inclusive
development tools, the Arduino platform stands as a beacon of
open-source collaboration, continually inviting users to learn,
create, and share their technical explorations with the global
community.

In conclusion, the strategic alliance between Arduino’s ac-
cessible programming model and I2C’s efficient communica-
tion standard presents a powerful combination for electronics
developers. The success of the demonstration project under-
scores the potential of this partnership and encourages the
continued adoption and application of Arduino and I2C in both
educational and professional settings. As such, these results
contribute to reaffirming the Arduino platform’s standing as an
invaluable asset for innovators and creators around the world.

A. Future Work

Building on the successes and lessons learned from the
current study, future work in this domain should consider
several avenues for further exploration. At a technical level, the
expansion of the Wire library to handle larger data buffers and
higher-speed I2C communication could open doors to more
complex and demanding applications, enhancing versatility
for power users. Moreover, investigating mechanisms for error
detection and correction could greatly increase robustness in
noisy environments or at extended distances. Additionally,
exploring multi-master I2C configurations within the Arduino
ecosystem could lead to advancements in distributed control
systems. On the educational and usability front, there is
potential for developing more comprehensive and interactive
tutorials, as well as user-friendly debugging tools within the
Arduino IDE that cater specifically to common challenges
encountered during I2C communication. Finally, there is much
room for bridging the gap between Arduino prototyping and
the production of commercial-grade electronics, especially in
the context of IoT devices, by creating standardized modules
and practices that can transition from prototype to product
seamlessly. This future work will continue to solidify the
role of Arduino as an integral part of the electronics and
maker communities, promoting innovation and simplifying
the sophisticated processes that drive the world of embedded
systems.



REFERENCES

[1] Arduino. (n.d.). Introduction to Arduino. Retrieved from
https://www.arduino.cc/en/Guide/Introduction

[2] Device Interactions Blog. (2018, April). Behind the
Scenes of Arduino IDE. Retrieved from https://blog.device-
interactions.com/2018/04/behind-scenes-of-arduino-ide.html

[3] Robotics Backend. (n.d.). Arduino setup() and loop() Functions Ex-
plained. Retrieved from https://roboticsbackend.com/arduino-setup-loop-
functions-explained/Arduino void setup

[4] Arduino Documentation. (n.d.). Wire Library. Retrieved from
https://docs.arduino.cc/learn/communication/wirewire-library

[5] Arduino Reference. (n.d.). Wire Library Functions. Retrieved from
https://www.arduino.cc/reference/en/language/functions/communication/wire/


