
Detour Hack Project
Shawn Hagler

EEL-4347
Florida State University

Panama City, United States
sth20u@fsu.edu

Jaehyun Lee
EEL-4347

Florida State University
Panama City, United States

jl21bd@fsu.edu

Noah Fielder
EEL-5348

Florida State University
Panama City, United States

nlf21@fsu.edu

ABSRACT

This paper presents a project that uses Microsoft’s Detour
library and virtual metthod table (VMT) hooking to create a
hack for the classic video game Battlefield 1942. The Detour
library is used to intercept calls to the game’s functions,
allowing us to modify the game’s behavior. VMT hooking
is used to modify the game’s classes and functions, allowing
us to add custom behavior to the game. By combining these
two methods, we are able to implement a hack that allows
players to gain an advantage in the game by manipulating the
game state. The hack is tested on a Windows 10 system and
the results are discussed. The paper ends by outlining future
work and potential applications of the hack.

I. INTRODUCTION

In the past few decades, video games have become an
increasingly popular form of entertainment around the world.
As the technology used to create video games has become
more sophisticated, the difficulty of cheating in them has
grown as well. The goal of the project presented in this paper
is to showcase basic examples of video game cheating in the
classic video game Battlefield 1942. The choice of this video
game was determined as the game used to be very popular
but is not played that often and online multiplayer servers
have been disbanded. This makes the game an ideal choice
for creating and publishing a video game cheat as it is not
very likely to have an adverse affect on other players.

II. EXISTING WORKS

A. Microsoft Detour Library

Microsoft’s Detour library is a software development tool
released by Microsoft Research in 2002; initial publication
of their paper was in 1999. The library is used to intercept
calls to an application’s API, allowing developers to modify
the behavior of the application. The Detour library provides
an easy-to-use interface for developers to create and manage
application hooks. It is composed of two parts: the Detour
library, which provides the interface for creating and managing
hooks, and the Detour library extension (Detex), which proides
additional features such as logging and debugging. The Detour
library is widely used in software development to analyze and
modify the behavior of applications. It has been used to create
game hacks, security tools, automated testing tools, and more.

III. IMPLEMENTATION

A. Dynamic Link Library Injection

Dynamic Link Library (DLL) injection is one of the tech-
niques used in our project to create the hack for Battlefield
1942. DLL injection is a process in which a DLL is loaded into
the address space of a process. This allows the DLL to access
the process’s memory and resources and execute arbitrary
code. DLL injection can be used to modify the behavior of
the process by loading custom code into the process’s address
space. In our project, we use DLL injection to load a DLL
containing our custom code into the game process. This allows
us to intercept calls to the game’s API and modify the game’s
behavior.

B. Function Detouring

Function detouring is another technique used in our project
to create the hack for Battlefield 1942. Function detouring is
the process of intercepting the execution of a function call to
modify its behavior. This is done by creating a new function
that is called instead of the original one. This new function can
then be used to modify the behavior of the original function.
This process ”detours” or ”reroutes” the execution of code in
the target process.

To create a function detour using Microsoft’s Detour library,
the following steps must be taken:

1) Create a new function that will be used as the detour.
This new function must have the same signature as the
original function it is replacing.

2) Call the DetourFunction function from the Detour
library to create a detour from the original function to
the new function.

3) Use the DetourRemove function from the Detour library
to remove the detour when it is no longer needed.

By using the Detour library, it is possible to intercept and
modify the behavior of any function in a program. This can
be used to create video game hacks that give the user an
advantage in the game.

C. Virtual Method Table Hooking

Virtual method table (VMT) hooking is another technique
used in our project to create the hack for Battlefield 1942.
VMT hooking is used to modify the behavior of a data
structure within a process by intercepting class to functions in

the data structure. It is used to modify the behavior of a class
without modifying the source code of the class. The process
of VMT hooking involves replacing the pointer to a particular
function in the VMT with a pointer to a new function that
will be used instead of the original one. This allows the new
function to be called instead of the original one. The usefulness
of this function over using Microsoft’s Detour library is that
it is easily used on functions within C++ object-oriented data
structures that output a virtual method.

To create a VMT hook, the following steps must be taken:
1) Find the VMT of a particular data structure. This can be

done by searching for the start of the VMT in memory.
2) Find the function in the VMT that needs to be replaced.
3) Create a new function that will be used as the replace-

ment. This new function must have the same signature
as the original one.

4) Replace the pointer to the original function in the VMT
with a pointer to the new function.

By using VMT hooking, it is possible to modify the
behavior of a data structure without modifying the source code.
This can be used to create video game hacks that give the user
an advantage in the game.

D. Reverse Engineering

Reverse engineering a video game typically involves dis-
assembling the game’s executable file and examining the
machine code to understand how the game works. This can
be done using a tool called a disassembler, which converts
the machine code into human-readable assembly language.
This process is crucial in creating the video game hack for
Battlefield 1942 as the contents of important data structures
and their offsets must be known. This process is also used to
identify the game’s virtual method tables.

As described in the above section, virtual tables are arrays
of function pointers that the game uses to call methods in
an object-oriented program. By examining virtual tables, it is
possible to determine how the game’s objects are organized
and how they interact with each other. Once the virtual tables
have been identified, the next step is to locate the addresses
where the game’s functions and data structures are stored in
memory. This can be done by searching the disassembled code
for references to these addresses, or by using a tool called a
debugger to monitor the game as it is running and watch how
it accesses these addresses.

Overall, the process of reverse engineering a video game
involves disassembling the game’s code, identifying its virtual
tables and data structures, and locating the addresses of its
functions and data structures in memory. This can provide
insight into how the game works and allow the user to modify
its behavior.

E. Code Example

The following is a simple code example for function de-
touring:
/ / ‘ s o u r c e a d d r e s s ‘
/ / − t h e memory a d d r e s s where we want

/ / t o p l a c e our ‘ jmp ‘ i n s t r u c t i o n
/ / ‘ d e s t a d d r e s s ‘
/ / − t h e memory a d d r e s s o f t h e a t t a c k e r ’ s code
/ / ‘ l e n g t h ‘
/ / − t h e number o f b y t e s used by t h e i n s t r u c t i o n
/ / we are o v e r w r i t i n g
void
Detour (void * s r c a d d r , void * d e s t a d d r , i n t l e n g t h) {

/ / The s m a l l e s t r e l a t i v e ‘ jmp ‘ i n x86 i s 5 b y t e s
i f (l e n g t h < 5) re turn ;

/ / Take c o n t r o l o f t h e memory r e g i o n
/ / we ’ re a t t a c k i n g .

DWORD o l d p r o t = {} ;
V i r t u a l P r o t e c t (s r c a d d r , l e n g t h ,

PAGE EXECUTE READWRITE,
&o l d p r o t) ;

/ / O v e r w r i t e t h e memory a d d r e s s w i t h t h e ‘ nop ‘
/ / (0 x90) i n s t r u c t i o n . T h i s i s n o t n e c e s s a r y
/ / b u t i s a n i c e f a i l s a f e measure and p r o v i d e s
/ / a n i c e p o i n t o f r e f e r e n c e when debugg ing .
memset (s r c a d d r , 0x90 , l e n g t h) ;

/ / C a l c u l a t e t h e r e l a t i v e a d d r e s s be tween t h e
/ / d e s t i n a t i o n a d d r e s s and t h e s o u r c e a d d r e s s
/ / by t a k i n g t h e d i f f e r e n c e minus t h e l e n g t h .
/ / T h i s g i v e s us t h e r e l a t i v e o f f s e t from t h e
/ / l a s t b y t e t h a t we have o v e r w r o t e t o t h e
/ / a d d r e s s o f t h e a t t a c k r e g i o n . T h i s i s
/ / n e c c e s s a r y as we are p e r f o r m i n g a r e l a t i v e
/ / ‘ jmp ‘ n o t an a b s o l u t e ‘ jmp ‘ so t h i s must
/ / be c a l c u l a t e d a t r u n t i m e .

DWORD r e l a d d r = ((DWORD) d e s t a d d r −
(DWORD) s r c a d d r) − l e n g t h ;

/ / O v e r w r i t e t h e s o u r c e a d d r e s s w i t h t h e r e l a t i v e
/ / ‘ jmp ‘ i n s t r u c t i o n (0 xE9) .
(BYTE) s r c a d d r = 0xE9 ;

/ / Add one b y t e t o t h e s o u r c e a d d r e s s so t h a t
/ / we can w r i t e t h e r e l a t i v e o f f s e t .
(DWORD) ((DWORD) s r c a d d r + 1) = r e l a d d r ;

/ / R e s t o r e t h e memory r e g i o n p r o t e c t i o n s .
DWORD new pro t = {} ;
V i r t u a l P r o t e c t (s r c a d d r , l e n g t h , o l d p r o t e c t i o n ,

&new pro t) ;
}

The following is a simple code example for VMT hooking:
/ / D e f i n e t h e o r i g i n a l v i r t u a l method
c l a s s O r i g i n a l V T a b l e {

p u b l i c :
v i r t u a l vo id do someth ing () ;

} ;

/ / D e f i n e a hook c l a s s t h a t w i l l r e p l a c e
/ / t h e o r i g i n a l method w i t h a new i m p l e m e n t a t i o n
c l a s s Hook : O r i g i n a l V T a b l e {

p u b l i c :
v i r t u a l vo id do someth ing () {

/ * new i m p l e m e n t a t i o n * /
}

} ;

i n t main () {
/ / Cr ea t e an i n s t a n c e o f t h e o r i g i n a l c l a s s
O r i g i n a l V T a b l e * o r i g = new O r i g i n a l V t a b l e () ;

/ / Cr ea t e a p o i n t e r t o t h e o r i g i n a l VMT
void ** vmt = * r e i n t e r p r e t c a s t <void ***>(o r i g) ;

/ / Rep lace t h e o r i g i n a l VMT w i t h t h e

/ / hooked VMT
*vmt = * r e i n t e r p r e t c a s t <void **>(new Hook ()) ;

/ / C a l l t h e o r i g i n a l method , which w i l l
/ / now be r e d i r e c t e d t o t h e hook method
o r i g −>do someth ing () ;

re turn 0 ;
}

IV. RESULTS

After the hack DLL is injected, we spawn and attach a
debug console for printing out values and logging for ease of
debugging. Figure 1 below showcases this in action.

Fig. 1. Cheat initialization.

Fig. 2. Cheat radar.

Figure 2 showcases the main goal of this video game hack
where we display enemies location on the game’s mini-map
that would normally only show teammate’s locations. This
would potentially give an advantage to the cheater within
the game. It is not uncommon for players to use hacks or
other unauthorized methods to gain an advantage in online
multiplayer games, although this is typically against the rules
and can result in penalties or bans. Figure 3 just simply
provides a zoomed image of the feature for better view.

V. CONCLUSION

This paper presented a project that combined Microsoft’s
Detour library and virtual method table (VMT) hooking to
create a hack for the classic video game Battlefield 1942.
By intercepting calls to the game’s functions and modifying
the game’s classes and functions, we were able to create a

Fig. 3. Cheat radar zoomed in.

hack that allowed players to gain an advantage in the game
by manipulating the game state.

Overall, this project demonstrates the power of combining
Microsoft’s Detour library and VMT hooking to create pow-
erful hacks that can give players an advantage in a game. This
project can be used as a starting point for creating similar
hacks for other games, or for other applications that require
function interception and modification.

A. Future Work

Future work on this project should focus on completing the
implementation for aimbot and visual ESP features. Aimbot is
a feature that allows players to automatically aim and shoot at
enemies, while visual ESP features provide players with a full
view of the game world, allowing them to see enemy positions
and other information.

To implement these features, Microsoft’s Detour library and
VMT hooking will need to be used to intercept calls to the
game’s functions and modify the game’s data structures and
functions. The aimbot feature will require additional code to
track and aim at enemy players, while the visual ESP feature
will require code to render a 3D view of the game world.

Once these features have been implemented, they can be
tested in-game to ensure that they are working correctly. This
will provide a valuable insight into the effectiveness of the
hack and can help to identify potential areas for improvement.

REFERENCES

[1] Hunt, ”Detours: Binary Interception of Win32 Functions”, Third
USENIX Windows NT Symposium, https://www.microsoft.com/en-
us/research/publication/detours-binary-interception-of-win32-functions/,
July 1999

[2] Niemand, ”Virtual Method Table Hooking Explained,”
niemand.com.ar, 30 Jan. 2019. [Online]. Available:
https://niemand.com.ar/2019/01/30/virtual-method-table-hooking-
explained/. [Accessed: 01 Dec. 2022].

