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Abstract

The Flower Pollination Algorithm (FPA) is a nature-inspired optimization algorithm that
replicates the global and local movements of pollinating bees and flowers in nature. In this
project, we examine and analyze the potential applications, advantages, and limitations of the
FPA. Notably, the FPA is illustrated to have high efficiency and is particularly potent in solving
complex optimization problems. The paper also offers a deeper exploration of underlying
mathematical equations, design, and function of the FPA. Lastly, outline the challenges faced
during the implementation of FPA within an FPGA-based system, and discuss possible solutions
to address them.



Introduction
Big Picture

The Flower Pollination Algorithm (FPA) is based on the natural process of flower
pollination. Figure 1 gives a visual example of pollination. Just like in nature, there are two types
of "pollination" in the FPA - global and local. Cross-pollination is when bees or butterflies carry
pollen far away from flowers on other plants. In the algorithm, this is represented as a global
optimum and it occurs when a completely new solution is tried for, and is not too close to what
we have already. Local optimum is like a flower pollinating itself or with a close neighbor, it's a
small change or adjustment to the current solution. The algorithm keeps doing this, making small
changes sometimes (local pollination) and big jumps to new areas at other times (global
pollination). Just as pollination propagates the fittest genes, this process keeps the best solution
(the current minimum) found so far and discards the rest. The algorithm keeps doing this until it
either finds the best solution (minimum) like a bee finding the best flower, or until a pre-set
amount of time passes. This is how the Flower Pollination Algorithm turns the natural process of
flower pollination into a problem-solving tool!
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This algorithm is all about finding either the maximum or minimum of your data set. To
do that, the algorithm compares each item to the previous max or min. The algorithm starts by
initializing the parameters of the search. A simple diagram detailing the following steps can be



seen in Figure 2. This would be deciding between using the global or local and the maximum or
minimum. Next, the algorithm will generate the population based on your data. In other words, it
will use the function being used in the algorithm to find the various data points. It will then
randomly pick one of the data points (or object) and automatically make the value the maximum
or minimum based on what the parameters. Assume maximum for this explanation. It will then
compare it to nothing for the first iteration which automatically makes it greater, so another
object is selected and compared to the max object. If the new object is greater than the current
max object, it becomes the max object. The process repeats until every object or point has been
checked and compared. A deeper explanation of the more intricate details can be found in the
existing works section along with an in-depth flow chart in Figure 10.

Initialize Parameters
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There are several equations that go into making an optimization algorithm work. The
Flower Pollination Algorithm has several equations for both the cases of global and local
pollination. Most papers found on FPA follow the same structure, but they all use different
variables. The main equation for global pollination is eq. 1 below.

Mathematics
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The variables mean the subscript i represents the flower, and t is the iteration. X represents the

actual desired resultant vector. g* represents the current best solution at iteration t [1]. The L in
eq.l refers to the Levy Flight Distribution which is seen in equation (eq.2) seen below. The
variable f here represents the gamma function which is a random number generator.
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For local pollination, equation 3 below is used. Here the variables x}t_ and x]t( represent two

different flowers from within the same population.
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For both cases, the variable for the flower is calculated using the following equation set (eq.4).
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Equation 1 is the equation in the algorithm used to determine the value of the global minimum.
Within equation 1 equations 2 and 4 are applied. Equation 2 calculates the Levy Flight value, and

equations 4 calculates the variable for the flower. Equation 3 is the equation for the local
minimum. It also utilizes equation 4 within it.

X

Advantages and Disadvantages

Like anything, the Flower Pollination Algorithm has its ups and downs. It just so happens
to have more advantages which made it a great candidate for this project. To combat the complex
nature of optimization problems, FPA uses parameter tuning. This allows the algorithm to
maximize performance and minimize loss which allows for more efficiency. It also has the
fastest and most accurate optimization algorithm for optimal parameter extraction [2]. This is
when the algorithm finds parameters so that the simulation and actual measured value are very
similar. Another benefit is the exponentially fast convergence rate. Flower Pollination Algorithm
converges quicker than other algorithms to either the maximum or the minimum. However, this
does cause the algorithm to converge prematurely and settle on the wrong data point. Based on
tests done by Xin-She Yang, FPA is more efficient than two of the most popular metaheuristic
optimization algorithms currently in use. Another issue lies in the “lack of perfect compromise
between global exploration and local exploitation” [3]. This is referring to the tradeoff known as
the exploration-exploitation-dilemma. However, this is a common problem between many
similar algorithms. The issue is deciding when the algorithm should conclude its search. Should
it continue to explore every piece of data and come to the exact optimal solution but take longer
to arrive there? Or should it go to the quicker solution based on what is currently known and
possibly miss the most optimal? Researchers are currently working on solving this issue.



Applications

Flower Pollination Algorithm has many different types of applications. One of the big
ones is signal and image processing. The algorithm can easily find global and local maximums
and minimums in a long signal. Other applications include computer gaming and wireless sensor
networking. Another big application of FPA is power systems. It is very useful in determining
the best scenario for specific loads.

Real World Application

A group of engineers at the University of KwaZulu-Natal, used the Flower Pollination
Algorithm on their project to optimize power flow. Their goal was to achieve automatic
generation control in their power system. Automatic generation control is when a system adjusts
the power output of multiple generators at different power plants, in response to changes in the
load [4]. Originally the engineers were using a Proportional Integral (PI) controller, but they
wanted to upgrade which made them switch to a Pseudo Derivative Feedforward with Feedback
(PDFF) controller. They plan to implement FPA into the PDFF controller. This allows for the
optimal dynamic performance to be found for each different type of power flow in a
reconstructed power system. Figure 3 shows the results of their simulation comparing the power
system before and after implementing FPA into the PDFF controller. Both curves converge to the
same point of zero, but the one using FPA fluctuates much less and narrows in on the point much
sooner than the other method [4].
Figure 3:
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Existing Example
First Design

The Flower Pollination Algorithm (FPA), proposed by Xin-She Yang in 2012, is based on
the characteristics of flower pollination, such as global and local pollination processes, flower
constancy, and reproduction probability. It introduces the inspiration for FPA, explains the
algorithm details, presents numerical experiments, and compares FPA’s performance with other
established optimization algorithms. They identified four key components of flower pollination:
biotic and abiotic pollination, global and local pollination, and switch probability [5]. The
researchers modeled the global and local pollination mathematically and combined them to form
the FPA. The paper then demonstrates the efficacy of FPA through numerical experiments. The
researchers tested FPA against four benchmark functions widely used in global optimization and
compared the results to other optimization algorithms: Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and Bat Algorithm. FPA consistently performed well and outperformed
other algorithms in certain cases. Furthermore, the researchers also found that FPA could solve
complex multidimensional problems very efficiently [5].

Significant Scientific Papers
Flower Pollination Algorithm Parameters Tuning

The researchers conducted extensive computational experiments to validate the FPA
using the flowchart shown in Figure 10 [1]. They used a set of standard benchmark functions to
test the performance of their tuned FPA and compared it with the standard FPA and other
well-known optimization algorithms. The results demonstrated that the adaptive tuning of FPA
parameters significantly improved the algorithm's performance in terms of convergence speed,
solution quality, and robustness. It delivered superior or comparable results to other algorithms
on benchmark functions. Figure 4 shows the benchmark functions that are being tested
throughout the paper [1].

Figure 4:
Function No Function Name Global optimum f;”
Unimodal 1 Sphere Function - 1400
2 Rotated High Conditicned Elliptic Function - 1300
3 Rotated Bent Cigar Function - 1200
4 Rotated Discus Function - 1100
5 Different Powers Function - 1000
Basic Multimodal 6 Rotated Rosenbrock’s Function - 900
7 Rotated Schaffers F7 Function - 800
8 Rotated Ackley’s Function - 700
9 Rotated Weierstrass Function - 600
10 Rotated Griewank's Function - 500
" Rastrigin's Function -400
12 Rotated Rastrigin's Function - 300
13 Non-Continuous Rotated Rastrigin’s Function -200
14 Schwefel's Function - 100
15 Rotated Schwefel's Function 100
16 Rotated Katsuura Function 200
17 Lunacek Bi_Rastrigin Function 300
18 Rotated Lunacek Bi_Rastrigin Function 400
19 Expanded Griewank's plus Rosenbrock’s Function 500
20 Expanded Scaffer's F6 Function 600
Composite Multimodal 21 Composition Function 1 700
22 Composition Function 2 800
23 Compesition Function 3 900
24 Composition Function 4 1000
25 Composition Function 5 1100
26 Composition Function & 1200

27 Composition Function 7 1300

28 Composition Function 8 1400



Flower Pollination Algorithm for Solving Constrained Optimization Problems

Another significant paper published by Gandomi et al. in 2013, presents a novel
optimization algorithm model called the Flower Pollination Algorithm (FPA), which was
developed to solve constrained optimization problems. Inspired by the natural pollination process
of flowering plants, the algorithm uses a mix of global and local search approaches to achieve
optimization. The paper includes both theoretical discussions on FPA and application-based
evidence of its effectiveness, showcasing its successful implementation in solving various
numerical and engineering problems. Based on the outcomes, the authors claim that the FPA
outperforms several established optimization algorithms [10].

A Novel Method Motivated from the Behavior of Flowers for Optimal Solution

Lastly, in 2020 Decoderz analyzed a method for optimal solution based on the behavior
of flowers, named the Flower Pollination Algorithm (FPA). The article elaborates on how the
algorithm works, providing a detailed analysis of its steps and methodologies. The author makes
a convincing argument for the effectiveness of the FPA, rooting for its implementation in a range
of optimization problem scenarios. The article also mentions the potential benefits and
application areas of FPA, eventually concluding that this innovative algorithm could provide
optimal solutions in a variety of contexts [2].

Significant Application
Due to the limitations and complexity of the FPA algorithm, it was not possible to find

and sort of hardware implementation of the algorithm. Also, the algorithm is mainly for
optimization, which made it harder to implement onto hardware. However, the algorithm was
used in different applications in order to experiment and solve different problems.

Experimental Implementation of Flower Pollination Algorithm for Speed Controller of a BLDC Motor
This paper presents an experimental implementation of the Flower Pollination Algorithm

(FPA) for speed control of a Brushless Direct Current (BLDC) motor. The researchers utilized

the algorithm to optimize the Proportional Integral Derivative (PID) controller parameters for the

speed control system of the motor. Using the FPA, it aimed to find the optimal PID parameters

(proportional gain, integral gain, derivative gain) that would minimize the overall error in the

system and increase efficiency. Also, implemented the optimized PID controller in a real BLDC

motor speed control system. The results showed significant improvement in the motor's

performance, specifically in terms of settling time, overshoot, and steady-state error [6].

Optimal Solving Large-Scale Traveling Transportation Problems by Flower Pollination Algorithm
Another application found explores the effectiveness of the Flower Pollination Algorithm

(FPA) in solving large-scale Traveling Transportation Problems (TTPs). The TTP, often referred

to as the Traveling Salesman Problem (TSP) in transportation literature, involves determining the

shortest possible route that a traveling entity (like a salesman or a vehicle) can take to visit a set

of destinations and return to the origin, thereby saving on time and cost. The researchers



implemented a computer model to apply the FPA to a set of large-scale TTP benchmarks. They
compared the performance of the FPA with established heuristics, such as the Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and Tabu Search (TS). As shown in Figure 5 and
Figure 6, FPA showed a fairly significant performance compared to other heuristics on the
benchmark problems, demonstrating its efficiency in solving TTP, especially on a large scale.
The algorithm was found to be effective in finding near-optimal or optimal solutions with
relatively low computational time, affirming the suitability of FPA for large-scale complex
optimization problems [7].
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Uniqueness of FPGA Implementation

One key benefit is the ability to execute tasks in parallel, allowing for faster execution of
complex optimization problems or real-time applications. Additionally, FPGA can be customized
and reprogrammed to meet specific task requirements, resulting in improved efficiency and
performance. The direct data pathway in FPGA hardware reduces latency compared to
software-based implementations or generic hardware platforms. FPGAs are also more



power-efficient than GPUs or high-performance CPUs, making them ideal for applications where
power consumption is a concern. Furthermore, FPGAs have high reliability and stability, with a
high tolerance for radiation and a lower risk of single-point failures, making them suitable for
critical applications that require continuous operation.

Example

In the Python code, we plan to write this in VHDL for the final report and presentation,
provided in the Appendix, the Flower Pollination Algorithm (FPA) is implemented to solve the
six-hump camelback function. This is a standard benchmark optimization problem in
mathematics and computer science, characterized by its many local minima and two global
minima points. This function is defined over a two-dimensional domain, and it is described as
follows (eq.5):

flz,y) = (4= 212" + (2/3))2® + 2y + 4(y* — 1)Y? [eq. 5]

The aim is to find the global minimum point of this function, which is represented as x =
[-0.0898, 0.0898], y =[0.7126, -0.7126] and the minimum function value should be -1.0316.
Notably, in complex optimization scenarios like this, traditional methods can get trapped in local
minima positions; hence, the use of the FPA, is a method inspired by the flower pollination
process.

In the Python script provided, the FPA starts by initializing a population of random
solution vectors (referred to as ‘flowers’). For each iteration, the algorithm performs a global
pollination (Levy flights, which allow for large-scale explorations of the solution space) or a
local pollination (small, random walks for local exploitation). A plot is then rendered, showing
the convergence of the algorithm over time to the global minima solution. It should be noted that
due to the stochastic nature of the algorithm, multiple runs may give slightly different results, but
on average, the algorithm should converge toward the global minimum. The script uses a
population size of 175 flowers and runs for 300 iterations. The parameters gamma (the step size),
lamb (the scaling factor), and p (the switching probability between global and local pollination)
have been chosen empirically. Adjusting these parameters can affect the algorithm’s performance
and convergence rate.


https://www.codecogs.com/eqnedit.php?latex=%20f(x%2C%20y)%20%3D%20(4%20-%202.1x%5E2%20%2B%20(x%5E4%20%2F%203))x%5E2%20%2B%20xy%20%2B%204(y%5E2%20-%201)y%5E2#0

Figure 7: Python Code

import random
import math
import os
import time

def initial position{flowers, min_walues, max_values):
# initialize a matrix with zero values
position = [[@] * (len(min_values) + 1) for _ in range(flowers)]

# iterate through each flower
for i in range(@, flowers):
# generate a random position for each x and y coordinate
for j in range(@, len(min_values)):
position[i][j] = random.uniform{min_values[j], max_values[j])

# set the Last column value as the evaluation of the six hump
# camel back function at the position
position[i][-1] = six hump_camel back({position[i][@:1len(min_values)])

# return the matrix of initial flower positions
return position

def levy flight(beta):
# generate two random numbers
rl = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)
r2 = int.from_bytes(os.urandom(8), byteorder = “big") / ((1 << 64) - 1)

# calculate the sigma numerator
sig num = math.gamma(l + beta) * math.sin{(math.pi * beta) / 2.8)

# calculate the sigma denominator
sig den = math.gamma((l + beta) / 2) * beta * 2**((beta - 1) / 2)

# calculate the sigma value
sigma = (sig num / sig den)**(1 / beta)

# calculate the levy step length and return the value
levy = (@.81 * rl * sigma) / (abs(r2)**(1 / beta))
return levy

def clip(num, min_value, max_value):
return max(min{num, max_walue), min_value)



def

def

pollination global({position, best global, flower, gama, lamb,
min_values, max_walues):

# create a copy of the best global position

¥ = list(best_global)

# update the x and y coordinates of the position using global pollination
for j in range(®, len(min_wvalues)):
x[j] = clip({position[flower][j] + gama * levy flight(lamb) *
(position[flower][j] - best global[j])),
min_values[j], max_values[j])

# set the Llast column value as the evalugtion of the six hump
# camel back function at the position
x[-1] = six_hump_camel back(x[@:len(min_values)])

# return the new position
return x

pollination_local(position, best_global, flower, nb_flower_1, nb_flower_2,
min_walues, max_wvalues):

# create a copy of the best global position

x = list(best_global)

# update the x and y coordinates of the position using local pollination
for j in range(®, len(min_wvalues)):
# generate @ random number
r = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)
x[j] = clip({position[flower][j] + r *
(position[nb_flower_1][j] - position[nb_flower_2]1[31)),
min_values[j], max_wvalues[j])

# set the last column value as the evaluation of the six hump
# camel back function at the position
¥[=1] = six_hump_camel back(x[8:1len{min_values)])

# return the new position
return x



def fpa(flowers, min_values, max_values, iterations, gama, lamb, p):
# record the start time of the algorithm
start = time.time()

# initialize the positions of the flowers
position = initial position(flowers, min_values, max_values)

# find the best global position from the initial flowers
best global = sorted(position, key=lambda x: x[-1])[@]

# create a copy of the best global position
x = list(best_global)

# iterate through the set amount of iterations

for count in range(iterations):
# print the current iteration and the best position found
print("Iteration = ", count, " f(x) = ", best_global[-1])

# iterate through each flower

for i in range(@, len(position)):
# choose two random flowers for local pollination
nb_flower 1 = int(random.random() * len(position))
nb_flower_2 = int(random.random() * len(position))

# ensure that the two flowers are not the same
while nb_flower_1 == nb_flower_2:
nb_flower_1 = int{random.random({) * len(position))

# generate g random number between @ and 1
r = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)

# if the random number is less than p then perform global pollination
# otherwise perform local pollination
if (r < p):
x = pollination global(position, best global, i, gama, lamb,
min_wvalues, max_values)
else:
pollination local(position, best global, i, nb_flower 1,
nb_flower 2, min_values, max_values)

ks
n

# if the new position results in a better solution, then

# if the new position results in a better solution, then
# update the current position
if (x[-1] <= position[i][-1]):
for j in range(@, len(x)):
position[1][§] = x[j]

# if the best position has been improved then update it
value = sorted({position, key=lambda x: x[-1])[@]
if (best_global[-1] > value[-1]):

best_global = list(wvalue)

# record the end time of the algorithm
end = time.time()
return best_global

def six_hump_camel_back(variables_values):
return 4 * variables values[B]**2 - 2.1 * variables values[B]**4 + (1/3) * variables_values[@8]**6 + \

variables_wvalues[@] * variables values[1] - 4 * variables_wvalues[1]**2 + 4 * variables_values[1]**4

best_solution = fpa(175, [-5,-5], [5,5], 3@e, @.1, 1.5, 0.8)



Figure 8:

lteration f(x)

0 -0.8708680541
10 -1.0115450486
40 -1.011547615
70 -1.017303535
80 -1.031034176

110 1.031517444
170 -1.031548803
175 -1.031578976
200 -1.031591313
250 -1.031608242
260 -1.031609412
270 -1.031622394
300 -1.031626743

Figure 9:
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Methodology
VHDL Code Division

Coding for the project was mainly divided into three parts, developing, updating, and
testing. Developing the structure and functions for the project, updating the code to execute and
output the expected results, then testing and debugging to test different inputs and variables.

Data Flow Graph

Figure 10 is a data flow chart proposed by Xin-She Yang [1]. This chart was used to
generate the original Python code for this algorithm as well as the modified Python code and
VHDL code were created during this project.



Figure 10:
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Coding Alternative
The Python code from the example section was rewritten into VHDL and modified to
generate an alternative coding solution for the project.

Figure 11: VHDL

=) package flower_polli

type real_vector_vector is array(natural range <>) of real_vector(l to 3):

4

| end flower pollination package;

library icee:

use ieee.std_logic_1164.all:

use ieee.std logic_unsigned.all:

use ieee.numeric std.alls

use ieee.math real.ally

use work.flower_pollination_package.all;

entity flower_pollination is
port (
clk: in std logic;
reset: in std _logic;
flower_count: in integer:
min: in integer:
max: in integer:
gamma: in real;
lamb: in real;
p: in real;
iterations: in integer;
best_solution: out real vector(l to 3)

) end flower_pollination;

L _vector is
variable seedl: integer := 123458789;
variable seed2: integer := 987654321;

seed3: integer := 239438458;
variable rand reall: real;

wvariable

variable rand reall2: real;
variable random: real wector(l to 2);

first random I

seed2, rand reall);

econd random

5 andom r
uniform({ssed2, seed3, rand reall);
random(1) rand_reall;
random{2) := rand_realZ;

return random;
end random real;

&

._value

values
function random integer(min_ wvalue: integer; max integer) return integer is
variable real random: real;

variable seedl, seed2: positive := 987654321;

kegin

return integer(real (min_walue} + real random * real (max_value - min_value + 1})7

end random_integer;

EL ! - 3 n

g2 function six hump camel back(variables: real vector) return real is
wvariable x: real := variables(l);
variable y: real := variables(2);

kegin
return 4.0 * (x**2) - 2.1 * (x**4) + ({1.0/3.0) ¥ (x*¥§)) + x * ¥ — 4.0 % (y**2) + 4.0 * (y**4);
end six_hump camel back;




kegin

- random coon x and y
for j in 1 to 2 loop
poaitiona(i) (1) := real(min) + random real(j) * realimax - min + 1)7
end loop;
-- ev I n he position
poaitiona(i) (3) := six hump camel_back(positions(i));
end loop;
return positions;
end initial positions;
- g Levy flight to d=

function levy flight(beta
constant sig_num: real
constant 3ig_den: real
variable sigma: real;
variable levy: real;
variable rl, r2: reals

real) return real is
:= 0.93953560298€6254;
1.6168504121556964

begin
rl := random real(l);
r2 := random real(l);

sigma := (3ig_num / sig_den) ** (lL.0 / beta)r
levy := {0.01 * rl * sigma) / (real{abs{r2)) ** (1.0 / beta));
return lewvy;

end levy flight;

|-||

1

-- pe il L I n a

real vector;
max: integer; flower: integer; gamma: real; lamb: real) return real wvector is

function pollination global (positions: real wvector_vect min: integer;

variable x: real_wector(l to 3);
wariakle delta: real;

c. te a x and ¥ ¢

for i in 1 to 2 loop

if x{i) < real{min) then

x{i}) := real{min);
2lsif x({i) > real(max) then
x{i) := real(max);
end if;
end loop;

at
x(3) 3ix hump camel back(x):
return x;

end pollination global;

ination e a fl c

inatio g & f an o, 1 with 1t 5

1 an only poll e with its ne 1
n_local(flower_count: integer; flower: integer; positions: real wvector vector;
min: integer; max: integer) return real wvector is
wvariable x: real vector(l to 3);
wvariable delta: real;
wvariable r: real;

wvariable nb flower 1l: integer

= random_integer(l, flower_count};

wariable nb_flower 2: integer := random integer(l, flower_count};
kegin
r := random real(l):

-— C e a

7 x and ¥y coordi

for i in 1 to 2 loop

aries

if (positions({flower) (i} + delta) > real(max) then

x(i) := real(max):
elsif (positions(flower) (i) + delta) < real{min} then
x(i} := real (min);
elae
x({i}) := positions(flower) (i) + delta;
end if;
end loop;
- the positi
x(3) := six_hump camel_back(x);
return x;

end pollination locals

x(i) := positions(flower)(i) + gamma * levy flight(lamb) * (best_position(i) - positions(flower)(i)):



signal count: integer := 07
begin
process (clk, reset)
variable positions: real vector wvector(l to 175);
est_position: real wvector(l to 3);
x: real_wector(l to 3);

begin
if {reset = "1') then
<= 03
positions := initial positions(flower count, min, max);
best_position := positions({l);

£lsif (rising edge(clk}) then

if ({count < iterations) then

for i in 1 to

lower _count loop

if (random real(l) < p) then
¥ := pollination global(positions, best_position, min, max, i, gamma, lamb);
else
¢ := pollination local (flower count, i, positions, min, max);

if (fitness_compare(positions (i), best position)) then

best_position := positions({i);
181 end ifr
laz end loop;

count <= count + 1;
end if;

best_solution <= best_position;
end if;
end process;
end beh;

Creative Solution

In order to output the expected results such as the simulation waveform showing different
minimum and variable values every iteration, it was required to generate different random values
every iteration of the algorithm. The solution that was utilized in the project is changing the
random value every clock cycle, so each iteration will be calculating the output using different
random values.

Limitations

Despite the noted advantages, there are a few limitations in the FPA algorithm. One
notable limitation is the challenge of premature convergence. The algorithm tends to find a
solution quickly but this solution is often not the best possible solution since the algorithm settles
prematurely. Furthermore, the FPA algorithm only replicates the strategies found in natural
pollination and therefore lacks the ability to adapt to changing conditions, this leading to less
optimal solutions in certain scenarios. Another significant limitation exists in the computational
resources required, as complex problems require larger population sizes and higher numbers of
iterations, leading to potentially high computational costs.



Results and Appendices
Figure 12: VHDL Code
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package flower pollination_package is

re va

type £
type real vector is array(matural rangs <>) of real;

end flower_pollination_package;

library IEEE;

use IEEE.STD LOGI C_llﬁ4 .BLL;
use ieee.numeric_std.all;
uses ieee.math_real.all;

use work.flowsr pollination package.all;

entity final2 is
Port ( clk, rst : in std legie;
flower_count: in integer;
iteration : in integer;
min, max: in integer;
gamma, lamb: in real;

p: in real;

x=xx : in real;

® vector,levy vector, local vector

best_x : out real wector(l to 2); > 2 F ==

fx : out real ); —-— best
end final2;

architecture Behavioral of final2 is

ralue

function levy_flight[beta: real; levy vector: real vector) return real is
constant sig_num: real := 0.9395856025866254;
constant sig_den: real := 1.6168504121556964;
variable sigma, levy: real;

wvariable rl, r2: real;

begin
rl := levy vector(l);
r2 := levy_vwector(2);

sigma := (sig_num / sig_den) ** (1.0 / beta);
levy := (0.01 * rl * sigma) / (real(abs(r2)) ** (1.0 / beta));
return levy;

end levy_flight;



—— functien te calculate the global pellination value

function pollination global (position: real vector; levy vector: real vector; best position: real vector;

min: integer; max: integer; gamma: real; lamb: real) return real vector is

44 E variable x=: real_vector(l to 2);

45 | variable delta: real;

46 1 begin

47 —— calculate sach coordinate positions

480 for i in 1 to 2 loop

: x(i) := position(i) + gamma * levy flight(lamb, levy vector) * (best position(i) - peosition(i));

-—- make sure the positions are within the beoundaries
—— otherwise set to min or max

if x(i) < real(min) then
®x(1i) := real(min);

elsif x(i) > real (max) then

x (1) real (max) ;
end if;
end loop;
return x;
end pollination glebal;
—— functien te calculate the local pollination walus
function pollination local (local vector: real vector; position: real vector; xxx: real; min: integer;
variable x: real_vector(l to 2);
variable dslta: real;
variable r: real;

begin

—- find the delta value to calculate each coordinate pesitions
for i in 1 to 2 loop
delta := r * (position(i) - local_vector(i));
ure the positions are within the boundaries
—— otherwise set to min or max

1f (position(i) + delta) > real(max) then

x (i) real (max) ;

elsif (position(i) + delta) < real(min) then

x (1) real (min) ;
else
x (1) position(i) + delta;
end if;
end loop;
g1 ! return x;
g2 @& end pollination local;
83
84 ! begin
85 @ process (clk, rst)
86 | variable mx : rsal vector(l to 2);
87 variakle temp, minimum : real := 0.0;
88 variable best_vector : real_vector(l to 2) := (others => 0.0);
89 E variakle count : integer;
90 begin
if (rst = '1") then -- reset

best_vector := [others =» 0.0);

minimum := 0.0;

elsif (rising_edge(clk)) then -- cvery clock cye

-— if a than the input pr

if (xxx < p) then

xx := pollination_global (x_vector, levy vector, best_vector, min, max, gamma, lamb);

else
1 xx := pollination local (local_vector, x_vector, xxx, min, max);
10 end if;
102 —-— using the posi calculate the function value
103 . temp := ((4.0 -
104 E xx (L) *xx(2)) + (-4.0 + 4.0% (m&x(2)**2) ) * (xx(2)**2);
105 ! -- check
106 . -- if less change the minimum and the best positcins accordingly
1 if (temp <= minimum) then
1 minimum := temp;

best_vector (1)
best_vector(2)

end if;

minimum

f,
ot
i

—— output the signal of best pesitions an

best_x (1) <= best_vector

best_x(2) <= best_vector

22

fx <= minimum;

end if;

end process;

118 & end Behavioral;



Figure 13: Test Bench Code

1 E library IEEE;
2 | use IEEE.Std logiec 1164.all;
3 use IEEE.Numeric std.all;
4 E use ieee.math_;eal.all;
5 | use work.flower_ pollination package.all;
\
. , . ‘
T entity finalZ_tb is
— end;
9,
lb'é architecture bench of final2 tb is
11 !
120 component final2
123 E Port ( clk, rst : in std_logic; -
14 flower_count: in integer; -
5. iteration : in integer; -
16 E min, max: in integer;
17 , gamma, lamb: in real;
18 . p: in real;
19 E ®xxx : in real;
20 - a
21 . x_vector,levy_vector, local_ vector : in real wector(l to 2);
22 E best_x : out real wector(l to 2); -- wvesctor of best
23 fx : out real ); -- best so
2%|$| end component;
25
28 E signal clk, rst: std legie;
27 | signal flower_count: integer;
28 E signal iteration : integer;
29 signal min, max: integer;
30 . signal gamma, lamb: real;
31 E signal p: real;
32 signal xxx : real;
33 . signal =x_vector,levy_vector, local_vector : real_vector(l to 2);
34 E signal best_x : real_vector(l to 2);
35 | signal fx: real;
36
37 E constant clock period: time := 10 ns;
38 signal stop_the_clock: boolean;
R
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begin

uut: £inal2 port map ( clk == clk,
rst => rst,
flower_count => flowsr_ count,

iteration => iteration,

min => min,

max => max,

gamma =% gamma,

lamb => lamb,

P => P

XXX => xxXxX,

®x_vector => =_vector,
levy vector => levy vector,
local_vector => local_vector,

best_x => best_x,
fx == fx );

stimulus: process
variable ss=dl, seesd2, =se=d3, =e=d4, ss=d5 : positive;
variable xx, v, z, levyl, levy2, locall, local2 : real;

begin

wait for 10 ns;

rst <= "0°;

flower_ count

iteration <= 300;

min <= =5;
max <= 5;
gamma <= 0.1;
lamb <= 1.5;
P < -8;

seedl

seesd2 = 2;
se=d2 = 3;
seesdd := 4;
seedS5 := 5;

uniform(ssedl, ssed2, =x);

uniform({seedl, ssed3, y);
uniformi{seed2, seed3, z);
uniform(ssedl, seed4, levyl);
uniform(seedl, seedS, levyZ);
uniform{seed2, seed4, locall);

uniform(ssedd, sesed5, localZ);

r each random

HKEX <= XHxX;

®_wvector (1) <= y-0.002;
x_vector (2) <= z-0.584;
levy vector(l) <= levyl;
levy wvector (2) <= levy2;
local_ wector (l) <= locall;
local vector(2) <= local2;

wait for 10 ns;

end loop;

wait;

end process;

clocking: process
begin
while not stop the clock loop
clk <= '0', '1' after clock _period / 2;
wait for clock period;
end loop;
wait;

end process;

end;



Simulation Waveform

New random values are generated every clock cycle then the algorithm is executed using
the random values. Figure 14:
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Within 835 nanoseconds the minimum value as well as the best coordinate positions are
obtained. Figure 15:
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Algorithm Verification
Python

The modified Python code was used to verify the results of the FPA. In the figure below,

it can be seen that the Python code converged on the same point as the VHDL code did for the
minimum: -1.0316. Figure 16:

Iteration = 283 f(x) = -1.8316275783783373
Iteration = 284 f(x) = -1.8316275783783373
Iteration = 285 f(x) = -1.8316275783783373
Iteration = 286 f(x) = -1.0316275783783373
Iteration = 287 f(x) = -1.8316275783783373
Iteration = 288 f(x) = -1.0316275783783373
Iteration = 289 f(x) = -1.8316275783783373
Iteration = 298 f(x) = -1.8316275783783373
Iteration = 291 f(x) = -1.8316275783783373
Iteration = 292 f(x) = -1.0316275783783373
Iteration = 293 f(x) = -1.8316275783783373
Iteration = 294 f(x) = -1.8316275783783373
Iteration = 295 f(x) = -1.8316275783783373
Iteration = 296 f(x) = -1.8316275783783373
Iteration = 297 f(x) = -1.8316275783783373
Iteration = 298 f(x) = -1.8316275783783373
Iteration = 299 f(x) = -1.8316275783783373
Iteration = 380 f(x) = -1.8316275783783373

[0.08945476939947151, -©.7128225465183462, -1.0316275783783373]

Matlab

Using the Matlab code for the Six-Hump Camel Back Function to validate the exact

output. Figure 17:
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untitled.m
IMATLAB Drivefuntitied.m

% % INPUTS:
%
xx = [0.088012, -0.71306[;

=

0/0./0

x1 = xx(1);
x2 = xx(2);
terml = (4-2.1%x172+(x1™4)/3)} * x1"2;

term2 = x1*x2;
term3 (-A+4%x2"2) * x272;

y = terml + term2 + term3;

fprintf ("%d", v);

bl

Command Window

>> untitled
-1.6831613e+0@

RTL Analysis

RTL analysis required the VHDL code to have integer variables and values instead of real

variables and values. In order to do that some of the functions’ return types needed to be
modified as well as some equations that were involved with floating numbers or division.



Figure 18:

Synthesized Circuit

Synthesizing required the VHDL code to have integer variables instead of real variables.
In order to do that some of the functions’ return types needed to be modified as well as some
equations that were involved with floating numbers or division.
Figure 19:
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Implemented Device

The VHDL code was not able to be implemented into the board due to the over utilization
of the input and output port. This limitation may be fixed using a different model of board.
Figure 20:

“ e Place Design (103 errors)

© [Place 30-415] 10 Placement failed due to overutilization. This design contains 354 I/O ports
while the target device: 7a35t package: cpg236, contains only 106 available user I/0. The target device has 106 usable |/O pins of which 0 are already occupied by user-locked 1/Os.
To rectify this issue:
1. Ensure you are targeting the correct device and package. Select a larger device or different package if necessary.
2. Check the top-level ports of the design to ensure the correct number of ports are specified.
3. Consider design changes to reduce the number of I/Os necessary.



Timing Analysis
Figure 21:

Log Timing
Q ¥ $ C W O : Design Timing Summary
General Information My
Timer Settings Setup Hold Pulse Width
@ Design Timing Summary Worst Negative Slack (WNS): -53.740 ns ‘Worst Hold Slack (WHS): 0.158 ns Worst Pulse Width Slack (WPWS): 4.500 ns
Clock Summary (1 Total Negative Slack (TNS):  -5585.348 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns.
Methodology Summary Number of Failing Endpoints: 161 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Check Timing (353 Total Number of Endpoints: 225 Total Number of Endpoints: 225 Total Number of Endpoints: 162
+ Intra-Clock Paths Timing constraints are not met.
Inter-Clock Paths
Other Path Groups hd

Timing Summary - timing_1

Timing
azsc”ia x|¢ = ] W © Timing Checks - Setup
General Informatior  Name Slack “1 Levels Routes HighFanout From To Total Delay LogicDelay NetDelay Logic% Net% Requirement Source Clock Destination Clock  Exception
Settings Constrained Paths
Timing Checks (20 ck
Setup (10) 1 Path1 68 37 96 best vector_reg[1][1]/C  best vector_reg[1][0]/CE 63358 40651 22.707 642 358 10000 clk clk
Hold (10 1, Path2 68 37 96  best_vector_reg[1][1]/C  best vector_reg[1][10]/CE 63358 40651 22.707 642 358 10000 clk ck
1 Path3 68 37 96  best vector_reg[1][1]/C  best vector_reg[1][11]/CE 63358 40651 22.707 642 358 10000 clk ck
T Path4 68 37 96 best_vector_reg[1][1]/C  best_vector_reg[1][12]/CE 63358 40.651 22.707 642 358 10000 clk clk
T Path5 68 37 96 best_vector_reg[1][1]/C  best_vector_reg[1][13]/CE 63358 40.651 22.707 642 358 10000 clk clk
T Path6 68 37 96 best_vector_reg[1][1]/C  best_vector_reg[1][14]/CE 63358 40.651 22.707 642 358 10000 clk clk
T Path7 68 37 96  best_vector_reg[1][1]/C  best_vector_reg[1][15]/CE 63358 40.651 22.707 642 358 10000 clk clk
T Path8 68 37 96 best_vector_reg[1][1]/C  best_vector_reg[1][16]/CE 63358 40.651 22.707 642 358 10000 clk clk
1 Path9 68 37 96  best vector_reg[1][1]/C  best vector_reg[1][17]/CE 63358 40651 22.707 64.2 358 10000 clk clk
1, Path 10 68 37 96 bestvector_reg[1][1]/C  best vector_reg[1][18]/CE 63358 40651 22.707 64.2 358 10000 clk clk

Timing Information of VHDL

The VHDL code took about 835 nanoseconds and 83 iterations to find the best positions
as well as the minimum values.
Figure 22:
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Timing Information of Python

The modified Python code took about 1.05 seconds and 186 iterations to find the
minimum value.
Figure 23:

Iteration = 181 f(x) = -1.8315827026212248
Iteration = 182 f(x) = -1.8315827026212248
Iteration = 183 f(x) = -1.8315827026212248
Iteration = 184 f(x) = -1.8315827026212248
time elapsed: 1.8451282392578125

Iteration = 185 f(x) = -1.8315853648975715
time elapsed: 1.853121868519184

Iteration = 186 f(x) = -1.8316895330641744
Iteration = 187 f(x) = -1.8316895330641744
Iteration = 188 f(x) = -1.8316895330641744
Iteration = 189 f(x) = -1.8316895330641744
Iteration = 198 f(x) = -1.8316895330641744

Iteration = 191 f(x) = -1.8316895330641744
time elapsed: 1.88312392234808225

Iteration = 192 f(x) = -1.831617853236341
Iteration = 193 f(x) = -1.831617853236341
Iteration = 194 f(x) = -1.831617853236341
Iteration = 195 F(x) = -1.831617853236341
Power Report
Figure 24:
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Set/Reset (0W) Device Static: 0485 W 1%)
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Ambient Temperature: 25.0°C
pep e Effective BJA: 5.0°C,
1/0 (64.425 W) el A e
Power supplied to off-chip devices: 0W
Confidence level: Low
Launch Power Constraint Advisor to find and fix
invalid switching activity




BASYS 3 Implementation
Finally, if the FPGA board is capable of handling the inputs and the outputs, then it can

be implemented into the board as shown in the figures below.

Figure 25: Integer output of the minimum value




Conclusion

The Flower Pollination Algorithm (FPA) is an effective tool for solving optimization
problems, inspired by the natural pollination process. The research presented here explores the
underlying principles of FPA, focusing on its advantages, applications, and limitations. We’ve
presented several compelling, real-world applications already benefiting from this algorithm,
demonstrating its wide-ranging applicability and potential. Despite its limitations, such as its
computational cost and inability to adapt to changing conditions, FPA remains a valuable
algorithm for tackling optimization problems. Our work in creating an FPGA-based version
promises to further its reach, allowing for hardware-level implementations of this powerful
algorithm. Future work should continue tuning and improving the algorithm to expand its utility
in addressing more complex optimization problems.
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