
FSU PANAMA CITY

EEL 4710 Introduction to VHDL

Performed by
Piper Ellsworth Jaehyun Lee Shawn Hagler
200843170 200820584 200697142

Instructor: Dr. Manzak

Summer 2023

Flower Pollination Algorithm



Abstract
The Flower Pollination Algorithm (FPA) is a nature-inspired optimization algorithm that

replicates the global and local movements of pollinating bees and flowers in nature. In this
project, we examine and analyze the potential applications, advantages, and limitations of the
FPA. Notably, the FPA is illustrated to have high efficiency and is particularly potent in solving
complex optimization problems. The paper also offers a deeper exploration of underlying
mathematical equations, design, and function of the FPA. Lastly, outline the challenges faced
during the implementation of FPA within an FPGA-based system, and discuss possible solutions
to address them.



Introduction
Big Picture

The Flower Pollination Algorithm (FPA) is based on the natural process of flower
pollination. Figure 1 gives a visual example of pollination. Just like in nature, there are two types
of "pollination" in the FPA - global and local. Cross-pollination is when bees or butterflies carry
pollen far away from flowers on other plants. In the algorithm, this is represented as a global
optimum and it occurs when a completely new solution is tried for, and is not too close to what
we have already. Local optimum is like a flower pollinating itself or with a close neighbor, it's a
small change or adjustment to the current solution. The algorithm keeps doing this, making small
changes sometimes (local pollination) and big jumps to new areas at other times (global
pollination). Just as pollination propagates the fittest genes, this process keeps the best solution
(the current minimum) found so far and discards the rest. The algorithm keeps doing this until it
either finds the best solution (minimum) like a bee finding the best flower, or until a pre-set
amount of time passes. This is how the Flower Pollination Algorithm turns the natural process of
flower pollination into a problem-solving tool!
Figure 1:

Procedure and Math
Procedure

This algorithm is all about finding either the maximum or minimum of your data set. To
do that, the algorithm compares each item to the previous max or min. The algorithm starts by
initializing the parameters of the search. A simple diagram detailing the following steps can be



seen in Figure 2. This would be deciding between using the global or local and the maximum or
minimum. Next, the algorithm will generate the population based on your data. In other words, it
will use the function being used in the algorithm to find the various data points. It will then
randomly pick one of the data points (or object) and automatically make the value the maximum
or minimum based on what the parameters. Assume maximum for this explanation. It will then
compare it to nothing for the first iteration which automatically makes it greater, so another
object is selected and compared to the max object. If the new object is greater than the current
max object, it becomes the max object. The process repeats until every object or point has been
checked and compared. A deeper explanation of the more intricate details can be found in the
existing works section along with an in-depth flow chart in Figure 10.

Figure 2:

Mathematics
There are several equations that go into making an optimization algorithm work. The

Flower Pollination Algorithm has several equations for both the cases of global and local
pollination. Most papers found on FPA follow the same structure, but they all use different
variables. The main equation for global pollination is eq. 1 below.

[eq. 1]



The variables mean the subscript i represents the flower, and t is the iteration. represents the𝑥
𝑖
𝑡

actual desired resultant vector. g* represents the current best solution at iteration t [1]. The L in
eq.1 refers to the Levy Flight Distribution which is seen in equation (eq.2) seen below. The
variable 𝛽 here represents the gamma function which is a random number generator.

[eq.2]

For local pollination, equation 3 below is used. Here the variables and represent two𝑥
𝑗
𝑡 𝑥

𝑘
𝑡

different flowers from within the same population.

[eq.3]
For both cases, the variable for the flower is calculated using the following equation set (eq.4).

[eq.4]
Equation 1 is the equation in the algorithm used to determine the value of the global minimum.
Within equation 1 equations 2 and 4 are applied. Equation 2 calculates the Levy Flight value, and
equations 4 calculates the variable for the flower. Equation 3 is the equation for the local
minimum. It also utilizes equation 4 within it.

Advantages and Disadvantages
Like anything, the Flower Pollination Algorithm has its ups and downs. It just so happens

to have more advantages which made it a great candidate for this project. To combat the complex
nature of optimization problems, FPA uses parameter tuning. This allows the algorithm to
maximize performance and minimize loss which allows for more efficiency. It also has the
fastest and most accurate optimization algorithm for optimal parameter extraction [2]. This is
when the algorithm finds parameters so that the simulation and actual measured value are very
similar. Another benefit is the exponentially fast convergence rate. Flower Pollination Algorithm
converges quicker than other algorithms to either the maximum or the minimum. However, this
does cause the algorithm to converge prematurely and settle on the wrong data point. Based on
tests done by Xin-She Yang, FPA is more efficient than two of the most popular metaheuristic
optimization algorithms currently in use. Another issue lies in the “lack of perfect compromise
between global exploration and local exploitation” [3]. This is referring to the tradeoff known as
the exploration-exploitation-dilemma. However, this is a common problem between many
similar algorithms. The issue is deciding when the algorithm should conclude its search. Should
it continue to explore every piece of data and come to the exact optimal solution but take longer
to arrive there? Or should it go to the quicker solution based on what is currently known and
possibly miss the most optimal? Researchers are currently working on solving this issue.



Applications
Flower Pollination Algorithm has many different types of applications. One of the big

ones is signal and image processing. The algorithm can easily find global and local maximums
and minimums in a long signal. Other applications include computer gaming and wireless sensor
networking. Another big application of FPA is power systems. It is very useful in determining
the best scenario for specific loads.

Real World Application
A group of engineers at the University of KwaZulu-Natal, used the Flower Pollination

Algorithm on their project to optimize power flow. Their goal was to achieve automatic
generation control in their power system. Automatic generation control is when a system adjusts
the power output of multiple generators at different power plants, in response to changes in the
load [4]. Originally the engineers were using a Proportional Integral (PI) controller, but they
wanted to upgrade which made them switch to a Pseudo Derivative Feedforward with Feedback
(PDFF) controller. They plan to implement FPA into the PDFF controller. This allows for the
optimal dynamic performance to be found for each different type of power flow in a
reconstructed power system. Figure 3 shows the results of their simulation comparing the power
system before and after implementing FPA into the PDFF controller. Both curves converge to the
same point of zero, but the one using FPA fluctuates much less and narrows in on the point much
sooner than the other method [4].
Figure 3:



Existing Example
First Design

The Flower Pollination Algorithm (FPA), proposed by Xin-She Yang in 2012, is based on
the characteristics of flower pollination, such as global and local pollination processes, flower
constancy, and reproduction probability. It introduces the inspiration for FPA, explains the
algorithm details, presents numerical experiments, and compares FPA’s performance with other
established optimization algorithms. They identified four key components of flower pollination:
biotic and abiotic pollination, global and local pollination, and switch probability [5]. The
researchers modeled the global and local pollination mathematically and combined them to form
the FPA. The paper then demonstrates the efficacy of FPA through numerical experiments. The
researchers tested FPA against four benchmark functions widely used in global optimization and
compared the results to other optimization algorithms: Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and Bat Algorithm. FPA consistently performed well and outperformed
other algorithms in certain cases. Furthermore, the researchers also found that FPA could solve
complex multidimensional problems very efficiently [5].

Significant Scientific Papers
Flower Pollination Algorithm Parameters Tuning

The researchers conducted extensive computational experiments to validate the FPA
using the flowchart shown in Figure 10 [1]. They used a set of standard benchmark functions to
test the performance of their tuned FPA and compared it with the standard FPA and other
well-known optimization algorithms. The results demonstrated that the adaptive tuning of FPA
parameters significantly improved the algorithm's performance in terms of convergence speed,
solution quality, and robustness. It delivered superior or comparable results to other algorithms
on benchmark functions. Figure 4 shows the benchmark functions that are being tested
throughout the paper [1].
Figure 4:



Flower Pollination Algorithm for Solving Constrained Optimization Problems
Another significant paper published by Gandomi et al. in 2013, presents a novel

optimization algorithm model called the Flower Pollination Algorithm (FPA), which was
developed to solve constrained optimization problems. Inspired by the natural pollination process
of flowering plants, the algorithm uses a mix of global and local search approaches to achieve
optimization. The paper includes both theoretical discussions on FPA and application-based
evidence of its effectiveness, showcasing its successful implementation in solving various
numerical and engineering problems. Based on the outcomes, the authors claim that the FPA
outperforms several established optimization algorithms [10].

A Novel Method Motivated from the Behavior of Flowers for Optimal Solution
Lastly, in 2020 Decoderz analyzed a method for optimal solution based on the behavior

of flowers, named the Flower Pollination Algorithm (FPA). The article elaborates on how the
algorithm works, providing a detailed analysis of its steps and methodologies. The author makes
a convincing argument for the effectiveness of the FPA, rooting for its implementation in a range
of optimization problem scenarios. The article also mentions the potential benefits and
application areas of FPA, eventually concluding that this innovative algorithm could provide
optimal solutions in a variety of contexts [2].

Significant Application
Due to the limitations and complexity of the FPA algorithm, it was not possible to find

and sort of hardware implementation of the algorithm. Also, the algorithm is mainly for
optimization, which made it harder to implement onto hardware. However, the algorithm was
used in different applications in order to experiment and solve different problems.

Experimental Implementation of Flower Pollination Algorithm for Speed Controller of a BLDC Motor
This paper presents an experimental implementation of the Flower Pollination Algorithm

(FPA) for speed control of a Brushless Direct Current (BLDC) motor. The researchers utilized
the algorithm to optimize the Proportional Integral Derivative (PID) controller parameters for the
speed control system of the motor. Using the FPA, it aimed to find the optimal PID parameters
(proportional gain, integral gain, derivative gain) that would minimize the overall error in the
system and increase efficiency. Also, implemented the optimized PID controller in a real BLDC
motor speed control system. The results showed significant improvement in the motor's
performance, specifically in terms of settling time, overshoot, and steady-state error [6].

Optimal Solving Large-Scale Traveling Transportation Problems by Flower Pollination Algorithm
Another application found explores the effectiveness of the Flower Pollination Algorithm

(FPA) in solving large-scale Traveling Transportation Problems (TTPs). The TTP, often referred
to as the Traveling Salesman Problem (TSP) in transportation literature, involves determining the
shortest possible route that a traveling entity (like a salesman or a vehicle) can take to visit a set
of destinations and return to the origin, thereby saving on time and cost. The researchers



implemented a computer model to apply the FPA to a set of large-scale TTP benchmarks. They
compared the performance of the FPA with established heuristics, such as the Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and Tabu Search (TS). As shown in Figure 5 and
Figure 6, FPA showed a fairly significant performance compared to other heuristics on the
benchmark problems, demonstrating its efficiency in solving TTP, especially on a large scale.
The algorithm was found to be effective in finding near-optimal or optimal solutions with
relatively low computational time, affirming the suitability of FPA for large-scale complex
optimization problems [7].
Figure 5:

Figure 6:

Uniqueness of FPGA Implementation
One key benefit is the ability to execute tasks in parallel, allowing for faster execution of

complex optimization problems or real-time applications. Additionally, FPGA can be customized
and reprogrammed to meet specific task requirements, resulting in improved efficiency and
performance. The direct data pathway in FPGA hardware reduces latency compared to
software-based implementations or generic hardware platforms. FPGAs are also more



power-efficient than GPUs or high-performance CPUs, making them ideal for applications where
power consumption is a concern. Furthermore, FPGAs have high reliability and stability, with a
high tolerance for radiation and a lower risk of single-point failures, making them suitable for
critical applications that require continuous operation.

Example
In the Python code, we plan to write this in VHDL for the final report and presentation,

provided in the Appendix, the Flower Pollination Algorithm (FPA) is implemented to solve the
six-hump camelback function. This is a standard benchmark optimization problem in
mathematics and computer science, characterized by its many local minima and two global
minima points. This function is defined over a two-dimensional domain, and it is described as
follows (eq.5):

[eq. 5]

The aim is to find the global minimum point of this function, which is represented as x =
[-0.0898, 0.0898], y = [0.7126, -0.7126] and the minimum function value should be -1.0316.
Notably, in complex optimization scenarios like this, traditional methods can get trapped in local
minima positions; hence, the use of the FPA, is a method inspired by the flower pollination
process.

In the Python script provided, the FPA starts by initializing a population of random
solution vectors (referred to as ‘flowers’). For each iteration, the algorithm performs a global
pollination (Levy flights, which allow for large-scale explorations of the solution space) or a
local pollination (small, random walks for local exploitation). A plot is then rendered, showing
the convergence of the algorithm over time to the global minima solution. It should be noted that
due to the stochastic nature of the algorithm, multiple runs may give slightly different results, but
on average, the algorithm should converge toward the global minimum. The script uses a
population size of 175 flowers and runs for 300 iterations. The parameters gamma (the step size),
lamb (the scaling factor), and p (the switching probability between global and local pollination)
have been chosen empirically. Adjusting these parameters can affect the algorithm’s performance
and convergence rate.

https://www.codecogs.com/eqnedit.php?latex=%20f(x%2C%20y)%20%3D%20(4%20-%202.1x%5E2%20%2B%20(x%5E4%20%2F%203))x%5E2%20%2B%20xy%20%2B%204(y%5E2%20-%201)y%5E2#0


Figure 7: Python Code







Figure 8:

Figure 9:

Methodology
VHDL Code Division

Coding for the project was mainly divided into three parts, developing, updating, and
testing. Developing the structure and functions for the project, updating the code to execute and
output the expected results, then testing and debugging to test different inputs and variables.

Data Flow Graph
Figure 10 is a data flow chart proposed by Xin-She Yang [1]. This chart was used to

generate the original Python code for this algorithm as well as the modified Python code and
VHDL code were created during this project.



Figure 10:



Coding Alternative
The Python code from the example section was rewritten into VHDL and modified to

generate an alternative coding solution for the project.

Figure 11: VHDL





Creative Solution
In order to output the expected results such as the simulation waveform showing different

minimum and variable values every iteration, it was required to generate different random values
every iteration of the algorithm. The solution that was utilized in the project is changing the
random value every clock cycle, so each iteration will be calculating the output using different
random values.

Limitations
Despite the noted advantages, there are a few limitations in the FPA algorithm. One

notable limitation is the challenge of premature convergence. The algorithm tends to find a
solution quickly but this solution is often not the best possible solution since the algorithm settles
prematurely. Furthermore, the FPA algorithm only replicates the strategies found in natural
pollination and therefore lacks the ability to adapt to changing conditions, this leading to less
optimal solutions in certain scenarios. Another significant limitation exists in the computational
resources required, as complex problems require larger population sizes and higher numbers of
iterations, leading to potentially high computational costs.



Results and Appendices
Figure 12: VHDL Code





Figure 13: Test Bench Code





Simulation Waveform
New random values are generated every clock cycle then the algorithm is executed using

the random values. Figure 14:

Within 835 nanoseconds the minimum value as well as the best coordinate positions are
obtained. Figure 15:



Algorithm Verification
Python

The modified Python code was used to verify the results of the FPA. In the figure below,
it can be seen that the Python code converged on the same point as the VHDL code did for the
minimum: -1.0316. Figure 16:

Matlab
Using the Matlab code for the Six-Hump Camel Back Function to validate the exact

output. Figure 17:

RTL Analysis
RTL analysis required the VHDL code to have integer variables and values instead of real

variables and values. In order to do that some of the functions’ return types needed to be
modified as well as some equations that were involved with floating numbers or division.



Figure 18:

Synthesized Circuit
Synthesizing required the VHDL code to have integer variables instead of real variables.

In order to do that some of the functions’ return types needed to be modified as well as some
equations that were involved with floating numbers or division.
Figure 19:

Implemented Device
The VHDL code was not able to be implemented into the board due to the over utilization

of the input and output port. This limitation may be fixed using a different model of board.
Figure 20:



Timing Analysis
Figure 21:

Timing Information of VHDL
The VHDL code took about 835 nanoseconds and 83 iterations to find the best positions

as well as the minimum values.
Figure 22:



Timing Information of Python
The modified Python code took about 1.05 seconds and 186 iterations to find the

minimum value.
Figure 23:

Power Report
Figure 24:



BASYS 3 Implementation
Finally, if the FPGA board is capable of handling the inputs and the outputs, then it can

be implemented into the board as shown in the figures below.
Figure 25: Integer output of the minimum value

Figure 26: Integer values of two coordinate positions for the minimum output



Conclusion
The Flower Pollination Algorithm (FPA) is an effective tool for solving optimization

problems, inspired by the natural pollination process. The research presented here explores the
underlying principles of FPA, focusing on its advantages, applications, and limitations. We’ve
presented several compelling, real-world applications already benefiting from this algorithm,
demonstrating its wide-ranging applicability and potential. Despite its limitations, such as its
computational cost and inability to adapt to changing conditions, FPA remains a valuable
algorithm for tackling optimization problems. Our work in creating an FPGA-based version
promises to further its reach, allowing for hardware-level implementations of this powerful
algorithm. Future work should continue tuning and improving the algorithm to expand its utility
in addressing more complex optimization problems.

References

[1] Mergos, P. E., & Yang, X. (2021). Flower pollination algorithm parameters tuning. Soft

Computing, 25(22), 14429–14447. https://doi.org/10.1007/s00500-021-06230-1

[2] Decoderz. (2020, January 27). Flower Pollination Algorithm (FPA): A Novel Method

Motivated from the Behavior of Flowers for Optimal Solution. Transpire Online.

https://transpireonline.blog/2020/01/27/flower-pollination-algorithm-fpa-a-novel-method-

motivated-from-the-behavior-of-flowers-for-optimal-solution/

[3] Cui, W., & He, Y. (2018). Biological Flower Pollination Algorithm with Orthogonal Learning

Strategy and Catfish Effect Mechanism for Global Optimization Problems. Mathematical

Problems in Engineering, 2018, 1–16. https://doi.org/10.1155/2018/6906295

[4] Subramanian, G. G., Stonier, A. A., Peter, G., & Ganji, V. (2022). Application of flower

pollination algorithm for solving complex large-scale power system restoration problem

using PDFF controllers. Complexity, 2022, 1–12. https://doi.org/10.1155/2022/7157524

[5] Yang, X. (2012). Flower pollination algorithm for global optimization. In Springer eBooks

(pp. 240–249). https://doi.org/10.1007/978-3-642-32894-7_27

[6] Potnuru, D., Mary, K. A., & Babu, C. S. (2019). Experimental implementation of Flower

https://doi.org/10.1007/s00500-021-06230-1
https://doi.org/10.1155/2022/7157524
https://doi.org/10.1007/978-3-642-32894-7_27


Pollination Algorithm for speed controller of a BLDC motor. Ain Shams Engineering

Journal, 10(2), 287–295.https://doi.org/10.1016/j.asej.2018.07.005

[7] Suwannarongsri, S. (n.d.). Optimal solving large scale traveling transportation problems by

flower pollination algorithm. https://wseas.com/journals/sac/2019/a065103-090.pdf

[8] Ali, M. M., Törn, A., & Viitanen, S. (2005). A numerical comparison of some modified

controlled random search algorithms. Journal of global optimization, 31(4), 545-572.

[9] Al-Sadi, A. M., & Budayan, M. (2016). Solving the global optimization problem using

Chebyshev interpolation and metaheuristic techniques. International Journal of

Operations Research, 12(1), 47-59.

[10] Gandomi, A. H., Yang, X. S., Alavi, A. H., & Talatahari, S. (2013). Flower pollination

algorithm for solving constrained optimization problems. Journal of Intelligent & Fuzzy

Systems: Applications in Engineering and Technology, 24(1), 27-35.

https://doi.org/10.1016/j.asej.2018.07.005
https://wseas.com/journals/sac/2019/a065103-090.pdf

