Flower Pollination Algorithm

Piper Ellsworth, Jaehyun Lee, Shawn Hagler

Methodology

Data Flow Graph


```
In [3]: import random
        import math
        import os
        def target function():
            return
        def initial_position(flowers = 3, min_values = [-5, -5], max_values = [5, 5], target_function = target_function):
            position = [[0] * (len(min_values) + 1) for _ in range(flowers)]
           for i in range(0, flowers):
               for j in range(0, len(min values)):
                   position[i][j] = random.uniform(min values[j], max values[j])
               position[i][-1] = target function(position[i][0:len(min values)])
            print(position)
            return position
        def levy flight(beta):
            beta = beta
            r1 = int.from bytes(os.urandom(8), byteorder = "big") / ((1 \le 64) - 1)
            r2
                   = int.from bytes(os.urandom(8), byteorder = "big") / ((1 \ll 64) - 1)
            sig num = math.gamma(1 + beta) * math.sin((math.pi * beta) / 2.0)
           sig den = math.gamma((1 + beta) / 2) * beta * 2**((beta - 1) / 2)
            sigma = (sig_num / sig_den)**(1 / beta)
           levy = (0.01 * r1 * sigma) / (abs(r2)**(1 / beta))
            return levy
        def clip(num, min value, max value):
            return max(min(num, max value), min value)
```

```
def pollination_global(position, best_global, flower = 0, gama = 0.5, lamb = 1.4, min_values = [-5, -5],
                                                       max values = [5, 5], target function = target function):
   x = list(best global)
   for j in range(0, len(min values)):
       x[j] = clip((position[flower][j] + gama * levy flight(lamb) * (position[flower][j] - best global[j])),
                                                                                    min values[j], max values[j])
   x[-1] = target function(x[0:len(min values)])
    return x
def pollination_local(position, best_global, flower = 0, nb_flower_1 = 0, nb_flower_2 = 1, min_values = [-5,-5],
                                                              max values = [5,5], target function = target function):
   x = list(best global)
   for j in range(0, len(min values)):
        r = int.from bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)
       x[j] = clip((position[flower][j] + r * (position[nb flower 1][j] - position[nb flower 2][j])),
                    min values[i], max values[i])
   x[-1] = target function(x[0:len(min values)])
    return x
```

```
def flower pollination algorithm(flowers = 3, min values = [-5, -5], max values = [5, 5], iterations = 50,
                                         gama = 0.5, lamb = 1.4, p = 0.8, target function = target function):
    count = 0
    score list=[]
    position = initial_position(flowers = flowers, min_values = min_values, max_values = max_values,
                                target function = target function)
    best global = sorted(position, key=lambda x: x[-1])[0]
   x = list(best global)
   while (count <= iterations):</pre>
        print("Iteration = ", count, " f(x) = ", best global[-1])
        score list.append(best global[-1])
        for i in range(0, len(position)):
            nb flower 1 = int(random.random() * len(position))
            nb flower 2 = int(random.random() * len(position))
            while nb flower 1 == nb flower 2:
                nb flower 1 = int(random.random() * len(position))
            r = int.from bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)
            if (r < p):
                x = pollination global(position, best global, flower = i, gama = gama, lamb = lamb,
                                       min values = min values, max values = max values, target function = target function)
            else:
                x = pollination local(position, best global, flower = i, nb flower 1 = nb flower 1,
                                      nb flower 2 = nb flower 2, min values = min values, max values = max values,
                                      target function = target function)
            if (x[-1] <= position[i][-1]):</pre>
                for j in range(0, len(x)):
                    position[i][j] = x[j]
            value = sorted(position, key=lambda x: x[-1])[0]
            if (best_global[-1] > value[-1]):
                best global = list(value)
        count = count + 1
    print(best global)
    return best global, score list
```

1

2
package flower pollination package is type real_vector is array(natural range <>) of real; 3 1 type real vector vector is array (natural range <>) of real vector(1 to 3); 4 5 🗇 end flower pollination package; library ieee; use ieee.std logic 1164.all; use ieee.std logic unsigned.all; use ieee.numeric std.all; use ieee.math real.all; use work.flower_pollination_package.all; 12 13 14 entity flower_pollination is 15 port (16 clk: in std logic; reset: in std logic; 18 flower count: in integer; 19 min: in integer; 20 max: in integer; 21 gamma: in real; 22 lamb; in real; 23 p: in real; 24 iterations: in integer; 25 best_solution: out real_vector(1 to 3) 26); 27 🖨 end flower pollination; 28 29 architecture beh of flower_pollination is 30 0 function random real return real vector is 31 variable seedl: integer := 123456789; 32 variable seed2: integer := 987654321; 33 variable seed3: integer := 239438458; 34 variable rand reall: real; 35 variable rand_real2: real; 36. variable random: real_vector(1 to 2); 37 begin 38 uniform(seed1, seed2, rand real1); 39 uniform(seed2, seed3, rand real2); 40 random(1) := rand_reall; 41 random(2) := rand real2; 42 return random; 43 🖨 end random real; 4.4 1

```
44
45 🖨
         function random integer(min value: integer; max value: integer) return integer is
             variable real random: real;
46 !
             variable seed1, seed2: positive := 987654321;
47
48 '
         begin
             uniform(seed1, seed2, real random);
49
             return integer(real(min value) + real random * real(max value - min value + 1));
50
51 A
         end random integer;
52
53 🖯
         function six hump camel back (variables: real vector) return real is
54
                 variable x: real := variables(1);
55 1
                 variable y: real := variables(2);
56 :
         begin
             return 4.0 * (x^{**2}) - 2.1 * (x^{**4}) + ((1.0/3.0) * (x^{**6})) + x * y - 4.0 * (y^{**2}) + 4.0 * (y^{**4});
57
58 A
         end six hump camel back;
59 i
         function fitness compare(a: real vector; b: real vector) return boolean is
60 🖯
61
         begin
62
             return (six hump camel back(a) <= six hump camel back(b));
63 🖂
         end fitness compare;
64 1
65 🖯
         function initial positions (flower count: integer; min: integer; max: integer) return real vector vector is
66
             variable positions: real vector vector(1 to flower count);
67 !
         begin
68 🖯
             for i in 1 to flower count - 1 loop
69 🖯
                 for j in 1 to 2 loop
70 :
                     positions(i)(j) := real(min) + random real(j) * real(max - min + 1);
71 0
                 end loop;
72 :
                 positions(i)(3) := six hump camel back(positions(i));
73 A
             end loop;
74 !
             return positions;
75 🖨
          end initial positions;
```

```
function pollination global (positions: real vector; best position: real vector; min: integer; max: integer; flower: integer; gamma: real; lamb: real) return real vector is
    variable x: real vector (1 to 3);
    variable delta: real:
begin
    for i in 1 to 2 loop
       x(i) := positions(flower)(i) + gamma * levy flight(lamb) * (best position(i) - positions(flower)(i));
       if x(i) < real(min) then
           x(i) := real(min);
        elsif x(i) > real(max) then
            x(i) := real(max);
       end if;
    end loop;
    x(3) := six hump camel back(x);
    return x:
end pollination global;
function pollination local (flower count: integer; flower: integer; positions: real_vector_vector; min: integer; max: integer) return real_vector is
    variable x: real_vector(1 to 3);
   variable delta: real;
   variable r: real;
   variable nb flower 1: integer := random integer(1, flower count);
   variable nb flower 2: integer := random integer(1, flower count);
begin
    r := random real(1);
   for i in 1 to 2 loop
       delta := r * (positions(nb_flower_1)(i) - positions(nb_flower_2)(i));
       if (positions(flower)(i) + delta) > real(max) then
            x(i) := real(max);
       elsif (positions(flower)(i) + delta) < real(min) then
            x(i) := real(min);
       else
            x(i) := positions(flower)(i) + delta;
       end if:
    end loop;
    x(3) := six_hump_camel_back(x);
    return x;
end pollination local;
```

```
128
129
           signal count: integer := 0;
130 i
      begin
131 🕀
          process (clk, reset)
              variable positions: real vector vector(1 to 175);
132 1
133 !
              variable best position: real vector(1 to 3);
134
              variable x: real vector(1 to 3);
135 '
          begin
               if (reset = '1') then
136 -
137
                   count <= 0;
                   positions := initial_positions(flower_count, min, max);
138
139
                   best position := positions(1);
140 !
               elsif (rising edge(clk)) then
141 🕀
                   if (count < iterations) then
142 🖯
                       for i in 1 to flower count loop
143 🖯
                           if (random real(1) < p) then
                               x := pollination global (positions, best position, min, max, i, gamma, lamb);
144
145 !
                           else
146
                               x := pollination local(flower count, i, positions, min, max);
147 (-)
                           end if:
148 🕀
                           if (fitness compare(positions(i), best position)) then
149
                               best position := positions(i);
150 (-)
                           end if:
151 0
                       end loop;
152 :
                      count <= count + 1;</pre>
153 🛆
                   end if;
154 !
               else
155
                   best solution <= best position;</pre>
156 A
               end if;
157 A
           end process;
158 - end beh;
```

Limitations

1. Complex algorithm design: The FPA involves complex mathematical operations. Translating these intricate operations into VHDL code may require significant effort and a thorough understanding of both the algorithm and the hardware design.

2. Limited resources: FPGA devices have limited resources, including logic elements, memory, and DSP blocks.

3. Performance constraints: FPGA based implementations of the FPA may face performance limitations due to the inherent parallelism and pipeline capabilities of FPGAs.

4. Debugging and testing complexities: Debugging and testing FPGA designs is inherently more challenging than software-based implementations.

Division of VHDL code

Lead Software Developer: Shawn

Assistant Software Developer: Jason

Tester/Debugger: Piper

Results

VHDL Code- Main

```
begin
 80 1
 81 🕀
              process (clk, rst)
 82
                  variable xx : real vector(1 to 2);
 83
                  variable temp, minimum : real := 0.0;
 84
                  variable best_vector : real_vector(1 to 2) := (others => 0.0);
 85
      0
                  variable count : integer;
 86
      0
              begin
      0
 87 🕀
                  if (rst = '1') then
      0
 88
                      best vector := (others => 0.0);
      0
 89 1
                      minimum := 0.0;
      0
 90
                  elsif (rising edge(clk)) then
 91 🕀
                      if (xxx < p) then
 92 1
      0
                          xx := pollination global(x vector, levy vector, best vector, min, max, gamma, lamb);
 93
                      else
      0
 94
                          xx := pollination local(local vector, x vector, xxx, min, max);
 95 A
                      end if;
      0
 96
                     temp := ((4.0 - 2.1*(xx(1)**2) + (xx(1)**4)/3.0))*(xx(1)**2)
      0
                                           + (xx(1)*xx(2)) + (-4.0 + 4.0*(xx(2)**2))*(xx(2)**2);
 97
 98 0
                              if (temp <= minimum) then
      0
                                  minimum := temp;
 99
                                  best vector(1) := xx(1);
101
                                  best vector(2) := xx(2);
102 A O
                              end if;
      0
103
       0
104
                  best x(1) <= best vector(1);</pre>
105
                  best x(2) <= best vector(2);</pre>
106
                  fx <= minimum;
107 🖨
                  end if;
108 🖂
              end process;
109 🖨
          end Behavioral;
```

VHDL Code- Global

```
28 🖨
          architecture Behavioral of final2 is
29
               function levy flight (beta: real; levy vector: real vector) return real is
30 0
31
                   constant sig num: real := 0.9399856029866254;
                                                                                                   L \sim \frac{(\beta+1) \times \sin\left(\frac{\beta\pi}{2}\right)}{\pi} \times \frac{1}{s^{\beta+1}}, \quad (s \gg s_o > 0)
                   constant sig den: real := 1.6168504121556964;
32
                   variable sigma: real;
33
34
                   variable levy: real;
35
                  variable r1, r2: real;
36
              begin
37
                   r1 := levy vector(1);
38
                  r2 := levy vector(2);
39
                   sigma := (sig num / sig den) ** (1.0 / beta);
40
                   levy := (0.01 * r1 * sigma) / (real(abs(r2)) ** (1.0 / beta));
41
                   return levy;
42 白
               end levy flight;
43 1
44 🕀
               function pollination global (position: real vector; levy vector: real vector; best position: real vector;
45
                                                       min: integer; max: integer; gamma: real; lamb: real) return real vector is
46
                   variable x: real vector(1 to 2);
47
                   variable delta: real;
48
              begin
49 0
                   for i in 1 to 2 loop
50
                       x(i) := position(i) + qamma * levy flight(lamb, levy vector) * (best position(i) - position(i));
51 0
                       if x(i) < real(min) then
52
                            x(i) := real(min);
                                                                                                       x_{i}^{t+1} = x_{i}^{t} + L(x_{i}^{t} - g^{*})
53
                        elsif x(i) > real(max) then
54
                            x(i) := real(max);
55 A
                       end if;
56 A
                   end loop;
57
                   return x;
58 🖨
               end pollination global;
59 1
```

VHDL Code- Local

```
60 🖯
             function pollination local (local vector: real vector; position: real vector; xxx: real; min: integer;
61
                                                                                     max: integer) return real vector is
62
               variable x: real vector(1 to 2);
63
              variable delta: real;
64
              variable r: real;
65
           begin
66
             r := xxx;
67 🖨
             for i in 1 to 2 loop
                                                                                      x_i^{t+1} = x_i^t + \epsilon \left( x_j^t - x_k^t \right)
                delta := r * (position(i) - local vector(i));
68 i
69 🖯
                if (position(i) + delta) > real(max) then
70
                      x(i) := real(max);
71 1
                   elsif (position(i) + delta) < real(min) then
72
                        x(i) := real(min);
73
                     else
74
                       x(i) := position(i) + delta;
75 白
76 白
77 ---
                  end if;
       end loop;
        return x;
78 🖂
             end pollination local;
```

Testbench

65 🤤		stimulus: process
66		<pre>variable seed1, seed2, seed3, seed4, seed5 : positive;</pre>
67		<pre>variable xx, y, z, levy1, levy2, local1, local2 : real;</pre>
68 ¦		begin
69	0	rst <= '1';
70	0	wait for 10 ns;
71 ¦	0	rst <= '0';
72	0	flower_count <= 175;
73	0	iteration <= 300;
74	0	min <= -5;
75	0	max <= 5;
76	0	gamma <= 0.1;
77 ¦	0	lamb <= 1.5;
78	0	p <= 0.8;
79		
80	0	seed1 := 1;
81	0	seed2 := 2;
82	0	seed3 := 3;
83	0	seed4 := 4;
84	0	seed5 := 5;
85 Q	0	for n in 1 to 300 loop
86	0	uniform(seed1, seed2, xx);
87	0	uniform(seed1, seed3, y);
88	0	uniform(seed2, seed3, z);
89 ¦	0	uniform(seed1, seed4, levy1);
90	0	uniform(seed1, seed5, levy2);
91	0	uniform(seed2, seed4, local1);
92 ¦	0	uniform(seed3, seed5, local2);
93	0	xxx <= xx;
94	0	<pre>x_vector(1) <= y-0.002;</pre>
95 ¦	0	$x_vector(2) \le z-0.984;$
96	0	<pre>levy_vector(1) <= levy1;</pre>
97	0	<pre>levy_vector(2) <= levy2;</pre>
98	0	<pre>local_vector(1) <= local1;</pre>
99	0	<pre>local_vector(2) <= local2;</pre>
100	0	wait for 10 ns;
101 🖨		end loop;
102		
103	0	wait;
104 🖯		end process;
105		<

Simulation Waveform

Untitled 6 × final2	.vhd * × final2	tb.vhd ×										3	ខេច
Q. 💾 @. Q.	20 🗶 📲	H H 12 27 +	Ге нГ –Г	×									0
			48.010 ns	14 W 2									^
Name	Value	10,000 15,000	50.000	FF 888	CO 000	CF 000	70.000	75 000		05 000		6F 000	100
	T IIII	40.000 ns 45.000 s	18 50.000 ns	55.000 ns	60.000 ns	65.000 ns	70.000 ns	75.000 ns	80.000 ns	85.000 ns	90.000 ns	95.000 ns	
la rst	0												
le flower count	175					1	75						
iteration	300	I				3	00						
14 min	-5						-5	1					
14 max	5						5			1			
🔓 gamma	0.1	II				0	.1						
lamb	1.5					1	5						
l⊌ p	0.8					0	.8						
1₩ xxx	0.47077053531793	. 0.470770535317939	0.34814783	36689856	0.8384104	10133396	0.07598996	27640374	0.00268689	31750167	0.8099740	52668542	
> 😻 x_vector[1:2]	0.28618979760097	. 0.286189797600979,.	. 0.0455821205	345499	0.699973399	188561,	0.406157705	744068,	0.944198777	0861,	0.2803918273	99921,	
> W levy_vector[1:2]	0.28822655085040	. 0.288226550850404,.	. 0.6496752095	53566,	0.075286211	6353152	0.026001185	1217947	0.078903351	2670676	0.7527951081	57743,	
> W local_vector[1:2]	0.23744783778603	. 0.237447837786036,.	. 0.6764583078	1895,0	0.927684272	313436,	0.427972833	183787,	0.148135568	327633,	0.9402037048	886455,	
✓ ♥ best_x[1:2]	0.38521755726777	0.385217557267778,-0.5	.704382018	ľ			0.0457768623	45085,-0.467	003128750092	1			
ه [1]	0.38521755726777	0.3852175572	7778	<u> </u>	1		0.	045776862354 '	5085	1		1	
16 [2]	-0.5170438201850	-0.5170438201	85016	<u> </u>			-0	.46700312875	0092				
¹ ∎ fx	-0.4342243261791	-0.4342243261	79125	к			-0	.69511641473	2108				
<pre>\$ stop_the_clock </pre>	FALSE					FA	LSE						
Clock_period	10000 ps					1000)0 ps						
	< — >	<											>

Simulation Waveform

Untitled 6 × final	2.vhd * × final2_	tb.vhd ×												? 8 8
Q. 💾 🔍 Q.	20 × +	H H 1	: ±r +F	Ген н-Г ·	-F 🗙 🖂									•
												845.880 n	s	^
Name	Value	795.000 ns	1800.000 ps	1805.000 ps	1810.000 ns	815.000 ns	820.000 ns	825.000 ns	830.000 ns	835.000 ns	1840.000 ns	845.000 ns	850.000 ns	1855.0
¹ clk	1													
18 rst	0													
le flower_count	175							175						
16 iteration	300							300						
16 min	-5							-5						
😼 max	5	4						5						
🔓 gamma	0.1	·						0.1						
😼 lamb	1.5							1.5						
l∎ p	0.8							0.8						
™ xxx	0.14976960782260	0.221008	0.5687255	05047036	0.02587191	78449147	0.08622194	64251795	0.6686268	37030308	0.1497696	078 <mark>22608</mark>	0.802502347	
> W x_vector[1:2]	0.73962845844846	0.672026	0.034044070	0826037	0.7521617220	93419,	0.0117989976	5479173	0.0880643604	210168	0.739628458	48467,	0.484154869	
> Vector[1:2]	0.09511976203304	0.134986	0.133831007	32858,0	0.8846255879	975393,	0.3528452569	86559,	0.9771336113	73275,	0.095119762	1330464	0.156749070	
> Vocal_vector[1:2]	0.02828280891080	0.514198	0.020686332	2345667	0.8938603146	556084,	0.193350412	64969,	0.9399466174	173677,	0.028282808	10 <mark>8084</mark>	0.809150727	
✓ ♥ best_x[1:2]	0.08801205550008	1	i	0.055636	4890080543,-0	.72055869881	9193	í.		0.088	0120555000858	,-0.71306195	9947564	
18 [1]	0.08801205550008				0.055636489	90080543				<u> </u>	0.08801	205 <mark>55000858</mark>		
12]	-0.7130619599475			1	-0.72055869	98819193	1			<u> </u>	-0.7130	519 <mark>59947564</mark>		_
`l e fx	-1.0316133035953	1			-1.0262524	8872319		1		ľ	-1.0316	1330359536		
stop_the_clock	FALSE	1	1		1	1	1	FALSE						
<pre>Use Clock_period</pre>	10000 ps		1		1	1	10	000 ps			1		1	
		<												~ ~

Calculations Python

L'anne de la company de la	0200100000			
Iteration =	283	f(x) =	-1.0316275783783373	-
Iteration =	284	f(x) =	-1.0316275783783373	
Iteration =	285	f(x) =	-1.0316275783783373	
Iteration =	286	f(x) =	-1.0316275783783373	
Iteration =	287	f(x) =	-1.0316275783783373	
Iteration =	288	f(x) =	-1.0316275783783373	
Iteration =	289	f(x) =	-1.0316275783783373	
Iteration =	290	f(x) =	-1.0316275783783373	
Iteration =	291	f(x) =	-1.0316275783783373	
Iteration =	292	f(x) =	-1.0316275783783373	
Iteration =	293	f(x) =	-1.0316275783783373	
Iteration =	294	f(x) =	-1.0316275783783373	
Iteration =	295	f(x) =	-1.0316275783783373	
Iteration =	296	f(x) =	-1.0316275783783373	
Iteration =	297	f(x) =	-1.0316275783783373	
Iteration =	298	f(x) =	-1.0316275783783373	
Iteration =	299	f(x) =	-1.0316275783783373	
Iteration =	300	f(x) =	-1.0316275783783373	
[0.0894547693	399471	151, -0.	7128225465183462, -1.0316275783783373]	~

Calculations MATLAB

untitled m	× ±
	e/untitled m
1 🖓	% INPUTS:
2 L	%
3	xx = [0.088012, -0.71306];
4 📮	%
5 L	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6	
7	x1 = xx(1);
8	$x^{2} = xx(2);$
9	
10	term1 = (4-2.1*x1^2+(x1^4)/3) * x1^2;
11	$term2 = x1^*x2;$
12	term3 = (-4+4*x2^2) * x2^2;
13	
14	y = term1 + term2 + term3;
15	
16	<pre>fprintf ("%d", y);</pre>
17	
Comma	nd Window
>> untitle	ed
-1.031613	2+00
>>	

Timing Information of Software Solution

Untitled 6 × f	inal2.vhd * ×	final2	tb.vhd	×					? 🗆 🖸
Q. 💾 🔍	Q 🔀 🗶	•[H I	1	±r	+ F [+	× 7- 7+	[e+]	•
								835.000 ns	^
Name	Value			820.0	00 ns	825.000 ns	830.000 ns	835.000 ns	840.000 л
Te xxx	0.6686268	3703030	0.0	0.0	86221946	54251795	0.6686268	7030308	0.14
> 😻 x_vector[1:2]	0.0880643	6042101	0.7	0.011	7989976	179173	0.0880643604	210168	0.73
> 😼 levy_vector[1:	.2] 0.9771336	1177327	0.8	0.352	8452569	86559,	0.9771336117	73275,	0.09
> 😽 local_vector['	1:2] 0.9399466	1747367	0.8	0.193	3504125	54969,	0.9399466174	73677,	0.02
✓ ♥ best_x[1:2]	0.0880120	5550008	0.05	56364890	080543,	-0.72055869	8819193	0.088012055	5000
76 [1]	0.0880120	5550008		0	.0556364	890080543		0.088012055	5000858
16 [2]	-0.7130619	9599475		-	0.720558	698819193		-0.71306195	9947564
[™] ∎ fx	-1.0316133	3035953		-	-1.02625	248872319		-1.03161330	359536
stop_the_cloc	k FALSE					F	ALSE		
lock_period	10000 ps					100	00 ps		
	<	>	<						>

Timing Information of Software Solution Python

Iteration = 181 f(x) = -1.0315827026212248Iteration = 182 f(x) = -1.0315827026212248Iteration = 183 f(x) = -1.0315827026212248Iteration = 184 f(x) = -1.0315827026212248time elapsed: 1.0451202392578125Iteration = 185 f(x) = -1.0315853648975715time elapsed: 1.05312180519104

Iteration	=	186	f(x)	=	-1.0316095330641/44
Iteration	=	187	f(x)	=	-1.0316095330641744
Iteration	=	188	f(x)	=	-1.0316095330641744
Iteration	=	189	f(x)	=	-1.0316095330641744
Iteration	=	190	f(x)	=	-1.0316095330641744
Iteration	=	191	f(x)	=	-1.0316095330641744
time elaps	sed	: 1.	08312	392	23480225
Iteration	=	192	f(x)	=	-1.031617853236341
Iteration	=	193	f(x)	=	-1.031617853236341
Iteration	=	194	f(x)	=	-1.031617853236341
Iteration	=	195	f(x)	=	-1.031617853236341

RTL Analysis

Device Implementation

✓ ➡ Place Design (103 errors)

(Place 30-415) IO Placement failed due to overutilization. This design contains 354 I/O ports

while the target device: 7a35t package: cpg236, contains only 106 available user I/O. The target device has 106 usable I/O pins of which 0 are already occupied by user-locked I/Os. To rectify this issue:

- 1. Ensure you are targeting the correct device and package. Select a larger device or different package if necessary.
- 2. Check the top-level ports of the design to ensure the correct number of ports are specified.
- 3. Consider design changes to reduce the number of I/Os necessary.

Timing Analysis

General Information	Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Logic %	Net %	Requirement	Source Clock	Destination Clock	Exception
Settings	Constrained Pa	aths (1)	Lovens	noutes	ingirianout			rotar b citaj	cogie o citaj	needenay	Logicio		inequirement.	bounce croch	Destination crock	cheeptre
 Timing Checks (20) 	clk (10)															
Setup (10)	Ъ Path 1	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][0]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
Hold (10)	Ъ Path 2	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][10]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
	🍾 Path 3	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][11]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
	Ъ Path 4	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][12]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
	🍾 Path 5	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][13]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
	🍾 Path 6	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][14]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
	Ъ Path 7	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][15]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
	🍾 Path 8	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][16]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
	Path 9	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][17]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	
	1 Path 10	-53.740	68	37	96	best_vector_reg[1][1]/C	best_vector_reg[1][18]/CE	63.358	40.651	22.707	64.2	35.8	10.000	clk	clk	

Power Report

	Summary		
Settings Summary (136.702 W, Margin: N/ Power Supply Utilization Details Hierarchical (136.217 W) Signals (25.262 W) Data (25.106 W) Clock Enable (0.157 W) Set/Reset (0 W) Logic (22.711 W) DSP (23.819 W) I/O (64.425 W)	Power estimation from Synthesized files, simulation files or vectorless ar change after implementation. Total On-Chip Power: Design Power Budget: Process: Power Budget Margin: Junction Temperature: Thermal Margin: Ambient Temperature: Effective &JA: Power supplied to off-chip devices: Confidence level: Launch Power Constraint Advisor to	netlist. Activity derived from constraints halysis. Note: these early estimates can 136.702 W (Junction temp exceeded!) Not Specified typical N/A 125.0°C -623.4°C (-124.4 W) 25.0 °C 5.0°C/W 0 W Low find and fix	On-Chip Power 99% Image: Dynamic: 136.217 W (99%) - Image: Dynamic: 136.217 W (99%) - Image: Dynamic: 136.217 W (19%) Image: Dynamic: 125.262 W (19%) Image: Dynamic: 22.711 W (17%) Image: Dynamic: DSP: Image: Dynamic: 23.819 W (17%) Image: Dynamic: 0.485 W (1%)