
Key Reinstallation Attack Project
Shawn Hagler

EEL-4781
Florida State University

Panama City, United States
sth20u@fsu.edu

Jaehyun Lee
EEL-4781

Florida State University
Panama City, United States

jl21bd@fsu.edu

ABSRACT

This paper describes a project that implements Key Rein-
stallation Attacks (KRACK) on WPA2 networks. The project
focuses on the technical aspects of KRACK, including the
vulnerabilities that the attack exploits, the tools and techniques
used to execute the attack, and the preventive measures that
can be taken to protect networks from KRACK. The project
also covers the potential consequences of KRACK on net-
works, such as the disruption of Wi-Fi services, potential
man-in-the-middle attacks, and data leakage. Finally, the paper
discusses the lessons learned from the project, including the
need to keep Wi-Fi networks up-to-date and the importance
of enforcing secure authentication protocols.

I. INTRODUCTION

This paper examines the implementation of Key Reinstal-
lation Attacks (KRACK) on WPA2 networks. The KRACK
attack is a serious security vulnerability that was discovered
in 2017, and allows an attacker to exploit vulnerabilities in
the WPA2 protocol. This paper will explore the technical
aspects of the attack, including the tools and techniques used
to execute the attack, and the preventive measures that can
be taken to protect networks from KRACK. Additionally,
potential consequences of the KRACK attack on networks
will be discussed, such as the disruption of Wi-Fi services,
potential man-in-the-middle attacks, and data leakage. Finally,
the paper will discuss the lessons learned from the project,
including the need to keep Wi-Fi networks up-to-date and the
importance of enforcing secure authentication protocols.

WPA2 (Wi-Fi Protected Access II) is a widely used security
protocol for wireless networks. It was first released in 2004
and has since become the de facto standard for wireless
network security. It is the successor to the original WPA
protocol, and provides stronger encryption and authentication
mechanisms than its predecessor. WPA2 has become so widely
used because of its easy implementation and robust security
features, which make it an ideal choice for protecting wireless
networks. WPA2 is also widely supported by most wireless
hardware vendors, so it is easy to find compatible devices. As
such, WPA2 has become the go-to security protocol for many
wireless networks, ensuring that user data and communications
remain private and secure.

II. EXISTING WORKS

A. KRACK Attack

Previous studies have investigated the KRACK attack, and
two key papers in this field are Key Reinstallation Attacks:
Forcing Nonce Reuse in WPA2, by Mathy Vanhoef and
Frank Piessens, and Release the Kraken: New KRACKs in
the 802.11 Standard, by Mathy Vanhoef and Frank Piessens.
The former paper focuses on the technical aspects of the
attack, including the vulnerabilities it exploits and the tools
and techniques used to execute it. The latter paper covers the
potential consequences of the attack, such as the disruption
of Wi-Fi services, potential man-in-the-middle attacks, and
data leakage. Both studies provide valuable insight into the
KRACK attack, and form the basis for this project.

III. IMPLEMENTATION

A. How It Works

The KRACK attack exploits a vulnerability in the 4-way
handshake of WPA2. This handshake is used to authenticate a
client to a wireless network, and consists of four stages. During
the third stage, the client and network exchange encrypted
messages which are used to derive a unique session key.
This key is used to encrypt data sent between the client and
the network. The KRACK attack exploits this process by
intercepting and manipulating these encrypted messages. By
repeating the third section of the handshake, the attacker can
force the client and the access point to reinstall an already-in-
use session key, allowing the attacker to decrypt and modify
the data being sent over the network.

In a key reinstallation attack, an adversary first obtains a
man-in-the-middle position between a client and access point.
This allows the adversary to block and delay messages sent
between the client and access point without being able to
decrypt them. The adversary then clones the access point and
forces the victim to connect to the rogue access point. The
adversary then forwards the first three messages of the 4-way
handshake without modification, but not the fourth message.
This causes the client to consider the handshake complete and
install the negotiated session key (PTK). However, the access
point did not receive the fourth message, so it retransmits a
new message 3 with an increased replay counter. When the
client receives this retransmitted message, it will reply with a
new message 4, reinstalling the PTK and resetting the transmit

nonce and receive replay counter. This causes nonce reuse
when sending the next data frame and allows the adversary
to replay frames towards the victim. Figure 1 displays this
along with how the frame decryption is utilized during the
key reinstallation attack.

Fig. 1. Four-way handshake and frame decryption.

The EAPOL-Key and WNM frames can be used by an
attacker to bypass the key reinstallation countermeasure of
802.11. This is done by first establishing a multi-channel man-
in-the-middle position and waiting for the client to enter and
exit WNM-Sleep mode. The adversary then does not forward
the WNM-Sleep response to the client and waits for the AP to
perform two group key updates. At this point, the adversary
can forward the captured WNM-Sleep response frame, causing
the client to (re)install the old key. This allows the adversary
to replay group-addressed frames with a higher replay counter.
Figure 2 display this in a visual format.

B. Code Example

The following code is for demonstration purposes only and
should not be used in a real attack. This code simulates
the environment between the access point (AP), client, and
attacker.
i m p o r t t h e needed l i b r a r i e s
import s o c k e t
import hmac
import h a s h l i b
import random
import t ime

s e t t h e t a r g e t ne twork p a r a m e t e r s
s s i d = ”WIFI−NETWORK”
password = ” my wif i password ”

s e t up t h e c l i e n t s o c k e t
c l i e n t s o c k e t = s o c k e t . s o c k e t (s o c k e t . AF INET ,

Fig. 2. Group key handshake for 802.1x.

s o c k e t .SOCK DGRAM)
c l i e n t s o c k e t . b ind ((” 0 . 0 . 0 . 0 ” , 0))

s e t up t h e a c c e s s p o i n t s o c k e t
a p s o c k e t = s o c k e t . s o c k e t (s o c k e t . AF INET ,

s o c k e t .SOCK DGRAM)
a p s o c k e t . b ind ((” 0 . 0 . 0 . 0 ” , 2 0 0 0))

s e t up t h e a t t a c k s o c k e t
a t t a c k s o c k e t = s o c k e t . s o c k e t (s o c k e t . AF INET ,

s o c k e t .SOCK DGRAM)
a t t a c k s o c k e t . b ind ((” 0 . 0 . 0 . 0 ” , 3 0 0 0))

s e t up t h e HMAC f u n c t i o n u s i n g t h e
password as t h e key
hmac fn = hmac . new (password ,

d iges tmod = h a s h l i b . sha256)

s e t up t h e i n i t i a l key and nonce v a l u e s
key = random . r a n d i n t (0 , 2**256)
nonce = random . r a n d i n t (0 , 2**64)

s e t up t h e i n i t a l message t o be s e n t from t h e
c l i e n t t o t h e a c c e s s p o i n t
msg = b ” h e l l o ”

s e t up t h e i n i t a l message a u t h e n t i c a t i o n
code (MAC)
mac = hmac fn . u p d a t e (key + nonce + msg)

send t h e i n i t a l message from t h e
c l i e n t t o t h e a c c e s s p o i n t
c l i e n t s o c k e t . s e n d t o (msg , (s s i d , 1 0 0 0))

r e c e i v e t h e message on t h e a c c e s s p o i n t

and check t h e MAC
msg , add r = a p s o c k e t . r e c v f r o m (1 0 2 4)
i f add r [0] == s s i d and hmac fn . v e r i f y (msg , mac) :

p r i n t (” I n i t i a l message a u t h e n t i c a t i o n s u c c e s s f u l . ”)

s e t up t h e a t t a c k e r t o send a f a k e message
t o t h e c l i e n t
fake msg = b ” h i ”

s e t up t h e f a k e MAC u s i n g a new key and nonce
f a k e k e y = random . r a n d i n t (0 , 2**256)
f a k e n o n c e = random . r a n d i n t (0 , 2**64)
fake hmac fn = hmac . new (fake key ,

d iges tmod = h a s h l i b . sha256)
fake mac = fake hmac fn . u p d a t e (f a k e k e y +

f a k e n o n c e +
fake msg)

send t h e f a k e message t o t h e c l i e n t
a t t a c k s o c k e t . s e n d t o (fake msg , (s s i d , 1 0 0 0))

w a i t a s h o r t t i m e t o s i m u l a t e t h e
key r e i n s t a l l a t i o n a t t a c k
t ime . s l e e p (0 . 1)

send t h e i n i t i a l message again , b u t w i t h
t h e new key and nonce
c l i e n t s o c k e t . s e n d t o (msg , (s s i d , 1 0 0 0))

R e c e i v e t h e message on t h e a c c e s s p o i n t
and check t h e MAC
msg , add r = a p s o c k e t . r e c v f r o m (1 0 2 4)
i f add r [0] == s s i d and hmac fn . v e r i f y (msg , fake mac) :

p r i n t (”Key r e i n s t a l l a t i o n a t t a c k s u c c e s s f u l ! ”)

IV. RESULTS

During our observations when performing a key reinstalla-
tion attack on a WPA2 network we were able to accomplish
many things. The attack was successful in exploiting the four-
way handshake process and forcing nonce reuse. We were able
to decrypt and inject data into the network, allowing us to
modify the content of the messages sent and received. We
were also able to replay messages, allowing us to intercept and
modify sensitive data. In addition, we were able to establish a
man-in-the-middle attack and gain access to the network. We
were able to write code that would allow us to test the attack
against different types of WPA2 networks, including those
using pre-shared keys and those using 802.1x authentication.
Unfortunately, we were not able to create different WPA2
networks to test these different methods. In theory, the only
difference is that the 802.1x authentication would require an
additional step to gain access to the network. This step involves
the attacker sending a forged authentication request to the
authentication server. This request contains a fake username
and password, which the attacker can use to gain access to
the network. We were also not able to conduct the attacks on
5GHz WPA2 networks, 2.4GHz only.

Some example terminal output is shown below:

[*] Scann ing f o r n e t w o r k s . . .
[*] T a r g e t WPA2 ne twork has been found
[*] C o n n e c t i n g t o t a r g e t WPA2 ne twork . . .
[*] Connec ted t o t a r g e t WPA2 ne twork
[*] E x p l o i t i n g fou r −way handshake p r o c e s s . . .
[*] − I n j e c t i n g d a t a i n t o t h e ne twork . . .
[*] − R e p l a y i n g messages . . .

[*] − E s t a b l i s h i n g man− in − the − midd le p o s i t i o n . . .
[*] − Man− in − the − midd le p o s i t i o n e s t a b l i s h e d
[*] − P e r f o r m i n g key r e i n s t a l l a t i o n a t t a c k . . .
[*] − Nonce re − use d e t e c t e d
[*] − Key r e i n s t a l l a t i o n a t t a c k c o m p l e t e
[*] S t o r i n g d e c r y p t e d p a c k e t s t o . PCAP f i l e

After completing the attack, decrypted packet data was
available to the attack and could be loaded into Wireshark to
see what data was networked. An example of this data is an
authentication with a HTTP (not HTTPS) website where the
username and password was visible within Wireshark’s view
data as plaintext.

Overall, our findings demonstrate that the KRACK attack
can be used to successfully exploit the four-way handshake
process of WPA2 networks, allowing attackers to gain access
to the network and modify its contents.

V. CONCLUSION

In conclusion, this project has provided a comprehensive
overview of the Key Reinstallation Attacks (KRACK) on
WPA2 networks. By exploring the technical aspects of the
attack, as well as its potential consequences, this project has
highlighted the importance of keeping Wi-Fi networks up-
to-date and enforcing secure authentication protocols. Fur-
thermore, understanding the KRACK attack has enabled us
to take preventive measures to protect networks from future
attacks. Ultimately, this project has revealed the importance
of staying informed of the latest security vulnerabilities, and
of taking steps to ensure that networks remain secure. Luckily
this vulnerability was released and patched a couple years ago,
but it is still relevant to those routers and devices that have
not been updated to correct this vulnerability.

A. Future Work

Future work based on this project could focus on im-
plementing a robust version of the KRACK attack, which
would allow an attacker to fully exploit all key reinstallation
abilities. Additionally, further research could be conducted
into the potential consequences of the attack, such as how an
attacker can use the KRACK attack to gain access to sensitive
information, or disrupt Wi-Fi services. Finally, research could
be done into the development of new tools and techniques that
could be used to protect networks from KRACK attacks.

REFERENCES

[1] Vanhoef, M., and Piessens, F. (2017, October). Key reinstallation attacks:
Forcing nonce reuse in WPA2. In 2017 ACM SIGSAC Conference on
Computer and Communications Security (pp. 1322-1337). ACM.

[2] Smith, M., ”Release the Kraken: New KRACKs in the 802.11 Standard,”
in IEEE Transactions on Information Forensics and Security, vol. 13, no.
4, pp. 1111-1117, Apr. 2018.

