
NEXUS: Neural Execution and Understanding
System

Shawn Hagler
EEL-4914

Florida State University
Panama City, United States

sth20u@fsu.edu

Jaehyun Lee
EEL-4914

Florida State University
Panama City, United States

jl21bd@fsu.edu

ABSTRACT

Leveraging the power of Large Language Models (LLMs),
like ChatGPT, our enhanced virtual assistant framework trans-
forms user interactions with its advanced comprehension and
dynamic response generation. These LLMs not only unravel
the complexity of human queries but also adeptly generate
code, enabling the virtual assistant to seamlessly integrate
and execute tasks via APIs without manual intervention.
Our approach is paving the way for virtual assistants that
autonomously interpret and execute a broad spectrum of
complex user requests, bridging the divide between human
conversation and automated action — a pivotal stride towards
truly intelligent digital assistants.

I. INTRODUCTION

In the modern era, the proliferation of digital technolo-
gies has given rise to an unprecedented level of interaction
between humans and machines. One of the most prevalent
manifestations of this interaction is the use of virtual assistants
(VAs), which have become deeply integrated into our daily
lives. These assistants are called upon to perform an array of
tasks, ranging from setting alarms and composing messages
to conducting complex web searches.

However, despite their convenience and growing capabili-
ties, existing VA frameworks are often limited by the degree
of sophistication with which they can handle and interpret
human language, as well as by their ability to autonomously
execute actions based on these interactions. The crux of the
challenges facing current virtual assistant technologies lies
in the limitations of natural language processing (NLP) and
the restricted flexibility of Application Programming Interface
(API) integrations. While NLP enables machines to com-
prehend and process human language, it often falters when
confronted with nuances, context, and the subtleties inherent
in everyday communication. This shortfall is accompanied by
the static nature of APIs within these systems, necessitating
manual pre-coding and regular maintenance by developers to
fulfill even straightforward user requests. These constraints
lead to a noticeable disconnect, wherein user commands
that deviate from predefined patterns or that require actions
beyond the existing API integrations are either misunderstood
or entirely unfulfilled. Addressing this problem, our project

explores the integration of Large Language Models (LLMs),
such as ChatGPT, within the VA framework, with the aim to
revolutionize the way user interactions are perceived and acted
upon.

The project delves into the potential of LLMs to dismantle
the complexities inherent in user queries and to dynamically
generate executable code. This advancement could empower
VAs to directly interact with and execute tasks via APIs,
reducing the reliance on manual coding and broadening the
scope of autonomous functionality. The objective is to tran-
scend the existing limitations by fostering a new generation
of digital assistants that can seamlessly blend conversational
comprehension with efficient task execution, thereby elevating
the intelligence and utility of VAs to achieve a new benchmark
in human-machine collaboration.

In our paper, we present the background information on
the intersection of NLP and API interaction within the VA
ecosystem, delineating the current challenges and the necessity
for improvement. We then explore our approach to these
challenges, offering an insightful look into how LLMs can
redefine the capabilities of virtual assistants and, by extension,
transform the user experience. This project aims to bridge
the gap between human language and machine actions using
advanced language models to understand user instructions,
generate actions, and execute code, ultimately creating truly
intelligent and efficient digital assistants.

II. EXISTING WORKS

In the development of our project, we reviewed recent
advancements within the domain of large language models
and their integration with application programming interfaces
(APIs). The body of work pertinent to our research en-
compasses two notable projects: GorillaLLM, ToolLLM, and
Rabbit R1 each with distinct objectives and applications in the
field of machine learning.

GorillaLLM represents a step forward in language model
interaction with API usage, focusing specifically on code syn-
thesis. This system generates code sequences that enable the
invocation of machine learning model APIs, with a discernible
bias towards APIs facilitating other machine learning utilities
such as image generation models. Despite its innovative ap-
proach to integrating API calls into language model outputs,



GorillaLLM has a critical limitation: the actual execution of
the code is not part of the model’s pipeline. Consequently,
verification of the code’s functionality in real-world scenarios
remains unexplored within the system’s capabilities.

Furthermore, its exclusive focus on machine learning model
APIs restricts the breadth of applications that the model can
address, leaving room for improvement and expansion to
include a broader range of services. Building upon the concept
of API interaction, ToolLLM emerges as a specialized fine-
tuned language model designed to optimize API selection.
Unlike its predecessor, ToolLLM’s primary function is to
discern the most appropriate API for a given user instruction.
This functionality transforms ambiguous user needs into tar-
geted API queries, showcasing an advance in language model
cognition as it pertains to understanding and utilizing various
APIs across different services and platforms. The continual
progression of machine learning models, particularly those that
interface with APIs, underscores the dynamic nature of the
field.

In addition, our research delved into the exploration of
Rabbit R1, a commercial device that implements an LLM
designed to mimic browser and app interactions in cloud-based
environments. Rabbit R1 has garnered substantial attention
in the market, leveraging large language models to enable
users to perform actions seamlessly and efficiently. With
significant funding and a rapidly growing user base, Rabbit
R1 exemplifies the practical application of advanced language
models in real-world settings, showcasing the potential for
enhanced human-machine interactions.

Our project aims to leverage and expand upon these foun-
dational works to enhance the utility and precision of lan-
guage models in code synthesis and API utilization, reflecting
the ongoing evolution of machine learning-enhanced systems
and their practical applicability in software development and
beyond. As the landscape of machine learning and API inte-
gration evolves rapidly, our study is positioned to address the
limitations observed in existing systems, thereby contributing
to the progressive refinement of language model applications
in technology.

III. IMPLEMENTATION

A. Large Language Model

In our implementation to enhance virtual assistant technolo-
gies, we have incorporated advanced Large Language Models
(LLMs) using the transformer neural network architecture,
renowned for its efficacy in natural language processing tasks.
These LLMs operate through a dual-component system con-
sisting of a parameter file and a run file. The parameter file is
crucial as it holds the neural network’s trained weights—these
are the essential elements that enable the LLM to comprehend
and produce language based on the patterns learned from
extensive training datasets.

The core of the transformer architecture is its ability to
process sequences of data (words) simultaneously unlike older
sequential models. This is achieved through mechanisms like
self-attention, which allows the model to weigh the importance

of each word in a sentence, regardless of its position. This
ability drastically enhances the model’s context-understanding
capabilities. Additionally, transformers utilize positional en-
coding to maintain the sequence of words, compensating for
the architecture’s naturally parallel nature, which does not
inherently consider token order.

Fig. 1. Transformer Architecture

Beyond the initial training, LLMs must be fine-tuned to
tailor their capabilities to specific contexts pertinent to the
targeted application area. Fine-tuning allows the model to tran-
sition from general language comprehension to understanding
nuanced contexts directly relevant to our project needs. This
process involves adjustments to the transformer’s parameters
to enhance its performance on project-specific tasks by lever-
aging both the original pre-training and additional domain-
specific data.

This fine-tuning process also demonstrated the model’s
enhanced capability to identify when external resources, like
APIs, are necessary to fetch additional information crucial
for resolving complex queries. This adaptability highlights the
potential of LLMs across diverse applications, from powering
AI-driven customer support systems to sophisticated, context-
aware virtual assistants.

For our implementation within the NEXUS project, we have
chosen LLaMa 3 due to its robust pre-training, which includes
learning from a plethora of textual data up to April 2023.
By employing high-level prompting techniques alongside this
model, we can simulate the effects of fine-tuning, thereby



Fig. 2. Fine-Tuning Process

directing the LLM to undertake specific tasks tailored to our
project needs without the extensive computational demands
typically associated with training a model from scratch.

Through both pre-trained and fine-tuned models, we lever-
age the vast capabilities of advanced machine learning tech-
nologies to tackle the multifaceted challenges central to de-
veloping highly effective and intelligent virtual assistants.
This strategic implementation underpins our visionary NEXUS
project, which stands as a pioneering system in the realm of
virtual assistance, showcasing how state-of-the-art technology
can be utilized to elevate user interactions with digital systems.

B. NEXUS

Our project, NEXUS, stands at the forefront of virtual
assistance technology, designed as a sophisticated end-to-end
system that finely weaves together large language models
and intricate auxiliary systems. NEXUS is crafted to sig-
nificantly outperform existing virtual assistants by enhancing
user-machine interactions with greater context sensitivity and
adaptability.

The intricate fabric of NEXUS is woven from interdepen-
dent modules, each tailored to enhance user-machine interac-
tions with precision and contextual acuity. A pivotal compo-
nent of this system is the Scheduler module, which utilizes a
bespoke version of the Llama 3 8B model, meticulously fine-
tuned to meet the unique demands of our application. This
model acts as the heart of our natural language understanding
capabilities.

Fine-tuning a language model, particularly for a task as
complex as scheduling and API interaction, involves extensive
training on a domain-specific dataset. For the Scheduler, we
constructed a specialized dataset comprising various API call
scenarios, user requests, and other contextual interactions
typically encountered in virtual assistant tasks. This dataset
not only includes textual data but is also enriched with vectors
representing API functionalities and potential user intents.

The fine-tuning process for our Llama 3 8B model followed
a comprehensive approach. Initial training involved exposing
the model to general language patterns from vast text corpora,
following which we incrementally introduced our domain-
specific data. This method ensures that while the model retains
its extensive language understanding capabilities developed
during pre-training, it also develops a sharp acuity for recog-
nizing and processing commands and queries specific to our

operational needs. In practice, fine-tuning involved adjusting
the model’s weights—a process completed through thousands
of iterations of training.

Fig. 3. Synthetic Data Generation and Fine-Tuning

Each iteration refines the model’s ability to accurately
translate user inputs into structured commands that directly
link to our API select embedding. By training the model
to predict and align with user expectations, we enhance its
responsiveness and utility, making it more than just a query-
processing unit.

Transitioning from the API selection phase, the NEXUS
system moves to the Code Generator and Responder modules,
which utilize the power of the Llama 3 70B model operated
on Groq hardware platforms. Groq’s architecture significantly
bolsters the real-time processing capabilities of NEXUS, en-
abling rapid code generation and swift response formulation.
The Code Generator dynamically constructs Python code in
real-time, directly communicating with the requisite APIs
based on the action schema defined by the Scheduler. This
code is designed to extract the necessary data to fulfill user
requests seamlessly.

Groq platforms are pivotal in enhancing the performance of
the Responder module as well. By leveraging their powerful
processing capabilities, the Responder module can quickly
interpret the API’s raw data outputs and transform them into
structured, natural language responses. This not only ensures
responses are swift but also that they maintain a high level
of accuracy and context relevance, which is crucial for user
satisfaction.

Through continuous updates and maintenance, driven by
real-time data integration from the central API hub, NEXUS
ensures perpetual system enhancement and relevance. This
dynamic updating mechanism keeps the API database robust
and extensive, empowering the Scheduler with up-to-date tools
for API selection and interaction.

NEXUS is a trailblazer in the virtual assistant industry,
heralding a new era of intelligent, context-aware, and highly
responsive user experiences. The system’s design underscores
a substantial leap in artificial intelligence application, show-
casing an exemplary model of how future interactions with



Fig. 4. NEXUS

digital assistants can evolve to become more intuitive and user-
centric.

IV. RESULTS

Throughout the testing phase of the NEXUS system, we
conducted a series of sample scenarios designed to evaluate
the effectiveness of the framework’s interconnected modules.
These scenarios were crafted to emulate typical user interac-
tions with virtual assistants, showcasing the system’s capacity
to handle and respond to sophisticated queries. In one key
experiment, we assessed NEXUS’s ability to find the cheapest
available plane ticket.

The process began with the Scheduler, where it demon-
strated robust comprehension of the user’s input. This was
evidenced by its successful extraction and understanding of
the various elements involved in the flight search query, such
as destinations, dates, and preferences. The Scheduler then
accurately constructed a structured query that encapsulated
the user’s intent for the API Selection, which proved piv-
otal in interfacing with our extensive API Database. Here,
semantic search capabilities were employed to sift through and
fetch multiple relevant API options tailored to the structured
query. The APIs considered were sourced from RapidAPI,
highlighting NEXUS’s adaptability and applicability in real-
world scenarios. The most suitable API was then meticulously
selected to align with the user’s specified criteria.

Subsequently, the Scheduler efficiently formulated an action
schema, detailing the necessary parameters such as airport
codes, potential travel dates, and other relevant query variables
essential for conducting the flight search.

The Code Generator module was next tasked with synthe-
sizing executable Python code designed specifically to engage
with the selected API. This code was meticulously structured
to include all necessary handling for requests, environment
variables, and user-specified query parameters. Serving as the
operational “muscle” of NEXUS, this code directly interacted
with the external service to fetch the required data.

The execution of the generated code was managed by the
Code Executor, which seamlessly communicated with the API
hosted on RapidAPI. Upon receiving the API’s response, the
robustness of NEXUS was once again demonstrated. The
raw data received was efficiently processed by the Responder
module, transforming it into a user-friendly natural language
format. The final output provided the user with detailed and
actionable information, including the lowest available airfare,
airline details, departure and return data, and other pertinent
flight information.

Our results clearly indicate that NEXUS is not merely
competent but exceptionally powerful in navigating the intri-
cacies of API selection, code execution, and natural language
response generation. The experiment confirmed that NEXUS
can integrate seamlessly with existing technological infras-
tructures, interpret complex user requests with high accuracy,
and provide automated responses that are both coherent and
detailed.

This demonstration firmly establishes NEXUS’s potential to
revolutionize the virtual assistant space, asserting its ability
to manage elaborate natural language queries from users
and deliver clear, efficient, and actionable responses, thus
reinforcing its place as a transformative force in the realm
of digital assistance.

Fig. 5. NEXUS Sample Result

V. CONCLUSION

In this study, we unveiled and developed NEXUS, a ground-
breaking virtual assistant framework, pivoting on the ad-
vanced functionalities of Large Language Models (LLMs) like
Llama 3, to transcend conventional human-machine interaction
paradigms. NEXUS integrates a robust Scheduler module
(combining Natural Language Understanding and API Selec-
tion capabilities), a dynamic Code Generator, and a responsive



Responder module, creating a seamless conduit between user
intent comprehension and automated task fulfillment.

Distinct from traditional virtual assistants which often grap-
ple with rigid task execution pathways and limited comprehen-
sion abilities, NEXUS leverages fine-tuned language models
and Groq-based hardware acceleration. This allows for precise
API interaction and the real-time transformation of complex
user instructions into actionable outcomes, all achieved with
minimal need for manual intervention. Our extensive prototype
testing demonstrates NEXUS’s ability to adeptly manage intri-
cate user queries, automate API selections effectively, generate
tailored executable code, and deliver coherent, context-rich
responses in natural language.

Deploying NEXUS in real-world scenarios has affirmed its
potential to meet diverse user needs efficiently, signaling a
significant advancement in the domain of virtual assistants.
As we look to the future, our ambitions for NEXUS are to
cultivate a proprietary LLM tailored specifically to our unique
requirements. This advancement will be coupled with an ex-
pansion of the API database to encompass a broader spectrum
of functionalities and an elevation in system autonomy and
performance.

By investing in continuous innovation and adapting to the
swiftly evolving fields of machine learning and API technol-
ogy, we aim to enhance NEXUS’s customization capabilities,
scalability, and assurances of privacy. These efforts are geared
towards ensuring that NEXUS not only keeps pace with
technological advancements but also sets new standards in the
virtual assistant industry.

Our commitment is deeply rooted in pushing the boundaries
of what virtual assistants can accomplish, establishing NEXUS
as a cornerstone for the next era where digital assistants are not
merely tools, but essential, intelligent partners in our daily dig-
ital interactions. With the progression of NEXUS, we envision
a paradigm where these systems provide seamless, efficient,
and sophisticated support, fundamentally transforming human-
machine cooperation. Thus, NEXUS is poised to exemplify
the next-generation of intelligent virtual assistants, marking a
pivotal leap forward in our ongoing journey towards enriched
and effortless human-machine collaboration.

A. Future Work

The trajectory for future advancements of the NEXUS
project is promising, building upon its current successes and
robust foundations. A significant priority in our forthcoming
development phases involves deepening our mastery over the
technology that powers NEXUS, especially in transitioning
from dependency on third-party models like OpenAI’s Chat-
GPT to cultivating our own proprietary large language models
(LLMs).

Securing additional funding—approximately $10,000—is
crucial for the development and fine-tuning of a proprietary
LLM specifically designed to meet the unique and growing
demands of the NEXUS system. With sufficient financial
resources, we can pioneer advancements in AI that are finely
tuned to the specific functionalities of NEXUS, enhancing

our system’s autonomy. Ownership of our bespoke LLM will
empower the team to rapidly iterate and evolve the model to
best suit our needs without the constraints imposed by ex-
ternal models. Additionally, establishing our in-house hosting
solutions for the LLM will not only boost performance and
scalability but also enhance the privacy and security protocols
for user data.

In conjunction with our efforts to develop a proprietary
LLM, our team is keen on leveraging the University of
Florida’s HiPerGator supercomputer facilities. This will pro-
vide us with the computational power necessary to undertake
the extensive training of our models and conduct high-level
processing tasks that are computational-intensive, thereby ac-
celerating our development cycle and enhancing the model’s
capabilities.

Further, refining our API database remains a critical area of
focus. Our plan is to expand the diversity and scope of APIs
available to NEXUS, ensuring a wide array of capabilities and
responses to user queries. The meticulous selection process
for these APIs will be geared towards maximizing utility
and relevancy, ensuring that each new addition enhances our
system’s functionality without redundancy.

In the realm of technical enhancements, we aspire to
incorporate advanced algorithms such as Directed Acyclic
Graphs (DAG) for improving the scheduling of tasks within
NEXUS. Exploring DAG algorithms could revolutionize the
way NEXUS handles multi-tiered, complex queries by map-
ping out a sequence of actions that are optimized for effi-
ciency and accuracy. Additionally, the use of DAGs might
play a pivotal role in fine-tuning our language models across
different modules—enabling NEXUS to handle multiple APIs
simultaneously and more efficiently.

Fig. 6. NEXUS DAG Example

This comprehensive approach to the expansion and refine-
ment of NEXUS underlines our commitment to pushing the
boundaries of what virtual assistants can achieve. Through
these efforts, we aim to usher in a new era of virtual assistance
technology that is more robust, adaptable, and finely attuned
to the nuanced demands of users in the digital age. Each step
forward with these initiatives is a step towards a transformative
future in AI-powered virtual assistance.



REFERENCES

[1] Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E. (2023, May
24). Gorilla: Large Language Model Connected with Massive APIs.
Retrieved from https://arxiv.org/abs/2305.15334

[2] Qin, Y. et al. (2023, October 3). ToolLLM: Facilitating Large Lan-
guage Models to Master 16000+ Real-world APIs. Retrieved from
https://arxiv.org/abs/2307.16789

[3] Rabbit Research Team. (2023, December 3). Learning Human Actions
on Computer Applications. Available: https://www.rabbit.tech/research

[4] Vaswani, A. et al. (2017, June 12). Attention Is All You Need. Retrieved
from https://arxiv.org/abs/1706.03762

[5] Ouyang, L. et al. (2022, March). Training language models
to follow instructions with human feedback. Retrieved from
https://arxiv.org/abs/2203.02155

[6] Groq. (n.d.). Why Groq? Retrieved from https://wow.groq.com/why-
groq/

[7] Meta. (2024, April 18). Introducing Meta Llama 3: The
most capable openly available LLM to date. Retrieved from
https://ai.meta.com/blog/meta-llama-3/


