NEXUS: Neural Execution and Understanding
System

Shawn Hagler
EEL-4911
Florida State University
Panama City, United States
sth20u@fsu.edu

ABSTRACT

Leveraging the power of Large Language Models (LLMs),
like ChatGPT, our enhanced virtual assistant framework trans-
forms user interactions with its advanced comprehension and
dynamic response generation. These LLMs not only unravel
the complexity of human queries but also adeptly generate
code, enabling the virtual assistant to seamlessly integrate
and execute tasks via APIs without manual intervention.
Our approach is paving the way for virtual assistants that
autonomously interpret and execute a broad spectrum of
complex user requests, bridging the divide between human
conversation and automated action — a pivotal stride towards
truly intelligent digital assistants.

I. INTRODUCTION

In the modern era, the proliferation of digital technolo-
gies has given rise to an unprecedented level of interaction
between humans and machines. One of the most prevalent
manifestations of this interaction is the use of virtual assistants
(VAs), which have become deeply integrated into our daily
lives. These assistants are called upon to perform an array of
tasks, ranging from setting alarms and composing messages
to conducting complex web searches. However, despite their
convenience and growing capabilities, existing VA frameworks
are often limited by the degree of sophistication with which
they can handle and interpret human language, as well as by
their ability to autonomously execute actions based on these
interactions.

The crux of the challenges facing current virtual assistant
technologies lies in the limitations of natural language pro-
cessing (NLP) and the restricted flexibility of Application
Programming Interface (API) integrations. While NLP enables
machines to comprehend and process human language, it
often falters when confronted with nuances, context, and the
subtleties inherent in everyday communication. This shortfall
is accompanied by the static nature of APIs within these
systems, necessitating manual pre-coding and regular main-
tenance by developers to fulfill even straightforward user
requests. These constraints lead to a noticeable disconnect,
wherein user commands that deviate from predefined patterns
or that require actions beyond the existing API integrations
are either misunderstood or entirely unfulfilled.

Jaehyun Lee
EEL-4911
Florida State University
Panama City, United States
jl21bd @fsu.edu

Addressing this problem, our project explores the integra-
tion of Large Language Models (LLMs), such as ChatGPT,
within the VA framework, with the aim to revolutionize the
way user interactions are perceived and acted upon. The
project delves into the potential of LLMs to dismantle the
complexities inherent in user queries and to dynamically
generate executable code. This advancement could empower
VAs to directly interact with and execute tasks via APIs,
reducing the reliance on manual coding and broadening the
scope of autonomous functionality. The objective is to tran-
scend the existing limitations by fostering a new generation
of digital assistants that can seamlessly blend conversational
comprehension with efficient task execution, thereby elevating
the intelligence and utility of VAs to achieve a new benchmark
in human-machine collaboration.

In our paper, we present the background information on
the intersection of NLP and API interaction within the VA
ecosystem, delineating the current challenges and the necessity
for improvement. We then explore our approach to these
challenges, offering an insightful look into how LLMs can
redefine the capabilities of virtual assistants and, by extension,
transform the user experience.

II. EXISTING WORKS

In the development of our project, we reviewed recent
advancements within the domain of large language models
and their integration with application programming interfaces
(APIs). The body of work pertinent to our research encom-
passes two notable projects: GorillaLLM and ToolLLM, each
with distinct objectives and applications in the field of machine
learning.

GorillaLLM represents a step forward in language model
interaction with API usage, focusing specifically on code
synthesis. This system generates code sequences that en-
able the invocation of machine learning model APIs, with
a discernible bias towards APIs facilitating other machine
learning utilities such as image generation models. Despite
its innovative approach to integrating API calls into language
model outputs, GorillaLLM has a critical limitation: the actual
execution of the code is not part of the model’s pipeline.
Consequently, verification of the code’s functionality in real-
world scenarios remains unexplored within the system’s capa-

bilities. Furthermore, its exclusive focus on machine learning
model APIs restricts the breadth of applications that the model
can address, leaving room for improvement and expansion to
include a broader range of services.

Building upon the concept of API interaction, ToolLLM
emerges as a specialized fine-tuned language model designed
to optimize API selection. Unlike its predecessor, ToolLLM’s
primary function is to discern the most appropriate API
for a given user instruction. This functionality transforms
ambiguous user needs into targeted API queries, showcasing
an advance in language model cognition as it pertains to un-
derstanding and utilizing various APIs across different services
and platforms.

The continual progression of machine learning models,
particularly those that interface with APIs, underscores the
dynamic nature of the field. Our project aims to leverage
and expand upon these foundational works to enhance the
utility and precision of language models in code synthesis and
API utilization, reflecting the ongoing evolution of machine-
learning-enhanced systems and their practical applicability in
software development and beyond.

As the landscape of machine learning and API integration
evolves rapidly, our study is positioned to address the limi-
tations observed in existing systems, thereby contributing to
the progressive refinement of language model applications in
technology.

III. IMPLEMENTATION
A. Large Language Model

In tackling the challenges outlined in our project, we have
incorporated Large Language Models (LLMs) to provide a
robust solution. These LLMs leverage the transformer neural-
network architecture, which has proven highly effective for
natural language processing tasks. The implementation of
LLMs in our project can be depicted in two primary com-
ponents: the parameter file and the run file. The success of
an LLM is contingent on its neural-network which harbors a
vast number of parameters. These weights embody the learned
patterns from an extensive corpus of training data, enabling
the model to understand and generate language effectively.
The parameter file is a crucial artifact, as it stores the trained
weights of the neural-network, making it possible to persist
and disseminate the learned knowledge. The application of
an LLM in a practical environment is facilitated by the
run file. This executable code initializes the neural network,
retrievs the weights from the parameter file, and orchestrates
the interaction between the user’s queries and the model’s
responses. The run file serves as a bridge connecting the pre-
trained LLM with real-world applications, ensuring that the
significant computational efforts invested during training are
translated into tangible outputs.

For instance, we delved into the training process of the
LLaMa 2 70B parameter model, a publicly accessible model
released by Facebook/Meta. Starting with a colossal dataset
of 10 terabytes of text, the neural network undergoes training
where approximately 80% of the data is used for learning,

leaving the remainder for model evaluation. The training
exercise, conducted over 12 days on 6000 GPUs, culminates
in a parameter file exceeding 140GB, capturing the distilled
knowledge from the data.

Furthermore, the implementation phase includes provisions
for fine-tuning the LLM on a domain-specific dataset. Such
fine-tuning customizes the generic capabilities of the model,
steering it towards a profound understanding of nuanced
contexts pertinent to our project. We have demonstrated this
with an example where a fine-tuned LLM exhibited a refined
grasp of context, distinguishing between an article generation
task and a direct question that required a response.

The fine-tuning process also brings to light the model’s
ability to discern the need for external resources, such as
APIs, to fetch additional information for comprehensive query
resolution. This capability demonstrates the LLM’s potential in
a wide array of applications, from Al-driven customer support
to intelligent virtual assistants.

As part of our implementation, we have chosen to work
with OpenAl’s ChatGPT due to its state-of-the-art training
with 1 trillion parameters and a rich dataset current as of April
2023. By leveraging the high-level prompting techniques, we
mimic the effects of fine-tuning, directing ChatGPT to perform
tasks aligned with our project needs without the computational
overhead of training the model from scratch. The utilization
of LLMs such as ChatGPT stands as a testament to the
effectiveness of our implementation strategy. Through both
pre-trained and fine-tuned models, we harness the power of
advanced machine learning to address the complex challenges
at the heart of our project.

B. NEXUS

In the realm of virtual assistance, our project introduces a
groundbreaking system dubbed NEXUS, an end-to-end system
predicated on the amalgamation of large language models
and auxiliary systems formulated to eclipse existing virtual
assistant technologies.

The NEXUS framework is composed of interconnected
modules that orchestrate a seamless flow of operations, starting
with the Natural Language Understanding (NLU) module,
which serves as the cornerstone. The NLU module is adept
at interpreting natural language input from users, discerning
context, intent, and entities, and converting this understanding
into a structured JSON-formatted query. This query initiates
the interaction with the API Selector, which is the subsequent
pivot in the NEXUS framework. The API Selector module
is where the ingenuity of neural network technology comes
into play, as it transforms the structured query into vector
embeddings. These embeddings enable the system to conduct
swift and semantic searches across a comprehensive API
database, identifying the most relevant API or APIs that are
best suited to respond to the user’s specific query.

Often, queries are broad and require additional user input
for accurate processing. Hence, the NEXUS system has been
designed so that the NLU module might re-engage with the
user to procure additional details, such as when a user instructs

the system to “Book a hotel”, the module may follow u f
with ”What dates?” to collect the necessary parameters fc _
the API’s operational requirements. With all the requisite dat m"*:“;;mp::,:”zf““}‘m
in place, NEXUS can navigate towards the Code Generatc s retisn date sefore senuass
module. Here, Python code is dynamically generated base

on the action schema, formulated earlier by the NLU modulc

and inclusive of all necessary user-specified parameters. Th

execution of this code bridges the user’s request with th

actual API service, obtaining the sought-after result. Upo

acquisition of the API’s response, the system does not ceas

its operation. Instead, the response is conveyed back to the
NLU module, where it is reconstituted into a natural language
format, delivering an articulate and responsive answer that

"intent": "find_cheapest_flight=,
“attributes®: {
“departure_city®: “Panama City, FL*,
destination_city": "Seattle, Washington®,
"earliest_departure_date”: "end of November®,
_ “latest_return_date”: “before January"
“commands”: {
"Find_api®: "search flights®

NLU

t
(¥

User
APT Selector

Fig. 2. User Input to NLU

fulfills the user’s initial query.
NEXUS remains ever contemporary, with the API database

being perpetually updated—determined by real-time data from

the API hub, ensuring a relentless progression and main-
tenance of the system’s comprehensive capabilities. Thus.
NEXUS stands as a testament to the future of virtual ass:
tance—a sophisticated system engineered to deliver intellige:
context-aware, and highly interactive user experiences, sigl
fying a paradigm shift in how virtual assistants consumeri
artificial intelligence.

=]
{9)

APT Database

Touoke
[mertd
Code Executor

[

APT Result

o
Structured
Query |

—

o
il

4PT se\eétor‘\T

L

[Best
API(s) S =
7‘/»1 Database APT HUB
I

Enbeding |
Results

Fig. 1. Overview of NEXUS

IV. RESULTS

In the course of our experimentation with the NEXUS
system, we have conducted sample scenarios to validate the
efficacy of the framework’s interconnected modules. These
scenarios are designed to mimic real-world user interactions
with virtual assistants and demonstrate the system’s capability
to process and respond to complex queries. One such scenario
involved a user request for locating the cheapest plane ticket
available. The query was first processed by the NEXUS Nat-
ural Language Understanding (NLU) module, which demon-
strated its ability to comprehend the request in full, evidenced
by its accurate extraction of multiple attributes related to the
flight search. The NLU module then generated a structured
search term for the API Selector module, encapsulating the
essence of the user’s intent.

The API Selector module took center stage by interfacing
with an API Database, which leveraged semantic search capa-
bilities to retrieve multiple relevant API options. The database
utilized for our example was derived from scraping a popular

API marketplace, Rapid API, illustrating the flexibility and
adaptability of NEXUS in real-world applications. From the
queried responses, the most suitable API was identified to
fulfill the user’s criteria.

"2 "Priceline con Frovider*

®: tinprt Teguestsiarl

Flight Baokings®
inpart regerstsiurl
Ralox®,
areh ai
Tt Teqeartsiarl

rparts by locatis

Fig. 3. API Selector

Next, the NLU module formulated an action schema based
on the available API information. In our scenario, this included
the necessary parameters to execute the flight search, such as
IATA airport codes, potential dates for departure and return,
and other pertinent query parameters.

.

"action_name”: "Find_cheapest_flight”,

"description”: "Finds the cheapest round-trip flight from
Panama City, FL to Seattle, WA, departing at the end
of Novenber and returning before January.”,

“parameters”: {

“departure.city.code®: "ECP",
“destination_city_cede": “SEA",
“earliest_departure_date": "2023-11-39,
“latest_rotu *: "2823-12-31%,
“api_name”: eline com Provider®,
“endpoint_name”: “Search flights®,
“query_parans®: {
*location_arrival®: "SEA®,
"itinerary_type": "ROUND_TRIP®,
"sort_order=: "
"class_type: "ECO",
"Location_departure”: "ECR",
"date_departure”: "2023-11-307,
“nunber.of .passengers”: 1",
“date_departure_return”: "2823-11-317

Code Generator

Fig. 4. Action Schema

The Code Generator module then synthesized executable
Python code geared specifically to interact with the selected

API. The code included provisions for handling requests, e1 -

vironment variables, and query parameters that conform to th [cheapest Flighe:

user’s input. This generated code represented the operation
“muscle” of NEXUS, directly engaging with external servict
to procure results.

= Price: $1958.18

- Airline: American Airlines
- Departure from Panama City, FL (ECP) to Seattle, WA (SEA): November 38, 2623,
- Return from Seattle, WA (SEA) to Panama City, FL (ECP): December 1, 2023,
- Stops: Honstop

= Duration (approx.): Outbound -

22:19]
23:18 T
NLU

Sh 5m; Return - Sh 18m

Code Ewseutor

Fig. 5. Code Generator

Execution of the generated code was the responsibility of
the Code Executor, which interfaced with the API from Rapid
APIL. When the API provided the response, NEXUS did not
falter; it showcased its robustness by passing the resultant
data back to the NLU module. This data, though raw, was
processed and translated into a user-friendly format—a direct
and succinct response to the user’s initial query. The natural
language response encapsulated detailed flight information
including the lowest price found, airline details, departure and
arrival information, along with additional flight specifics.

code™: "AS",
"rane™: "Alaska Airlines”,
“snalllmage™: “airLoge AS.pag"
0%
"Listings=: [
f

A

In]

o
Raged APT

“toralPricedithDecinal®: {
| “price: 1261.9¢

“aarhatinghirlisas®: [
{
reoder: "uar

Fig. 6. API Result

Our results showed that NEXUS is a competent and power-
ful system capable of navigating through the complexities of
API selection, code generation, and natural language process-
ing to deliver actionable information to end-users. Through
this experiment, NEXUS proved it can readily integrate with
existing technology infrastructures, interpret user requests ac-
curately, and facilitate automated responses in a coherent and
detailed manner.

!

~~

o~
L)

User

Fig. 7. Natural Language Response

The demonstration underpins NEXUS’s potential as a trans-
formative player in the realm of virtual assistance, affirming
the system’s capability to manage intricate, natural language
user queries and present the resulting data with clarity and
efficiency.

V. CONCLUSION

In summary, our study introduced and developed NEXUS,
an innovative virtual assistant framework that leverages the
robust capabilities of Large Language Models (LLMs) such
as ChatGPT to redefine the paradigm of human-machine
interaction. By integrating a sophisticated Natural Language
Understanding (NLU) module, an intelligent API Selector,
and a dynamic Code Generator, NEXUS successfully bridges
the gap between conversational comprehension and automated
task execution. Our system circumvents the traditional limita-
tions of virtual assistant technologies by enabling direct API
interactions and facilitating real-time execution of user instruc-
tions without the need for manual code intervention. Through
rigorous experimentation, the NEXUS system has been em-
pirically validated to handle complex user queries, automate
the selection of appropriate APIs, generate executable code,
and present actionable responses in natural language. The
application of our system in practical scenarios demonstrates
its proficiency in addressing real-world user needs, thereby
marking a significant step forward in the evolution of virtual
assistants. Moving forward, our vision for NEXUS entails
the development of a proprietary LLM, the diversification
of the API database, and the enhancement of the overall
system’s autonomy and performance. By channeling financial
investment and focusing on innovation, we aim to achieve
greater customization, scalability, and privacy assurance, all
the while keeping apace with the rapidly changing landscape
of machine learning and API development. Our project reflects
a strong commitment to pushing the boundaries of what virtual
assistants can achieve and sets the stage for a future where
human-like digital assistants are integral and omnipresent
in supporting and enriching our digital experience. NEXUS,
therefore, is poised to become an archetype of the next gen-
eration of intelligent virtual assistants, marking a substantial
leap in the journey towards seamless, efficient, and intelligent
human-machine collaboration.

A. Future Work

Despite the successful implementation of NEXUS and
promising results yielded from its evaluations, our project
is poised for further advancement in the coming semesters.
Current reliance on third-party language models, such as
OpenAI’s ChatGPT, has directed us toward the pursuit of
enhanced autonomy over the tools integral to NEXUS.

A primary focus for future work is the acquisition of funds
approximately amounting to $10,000. This investment is aimed
at the development and fine-tuning of our own large language
model (LLM). With dedicated financial resources, the project
can break new ground in custom LLM training—personalizing
it to better align with the specific needs of NEXUS. Ownership
of the LLM would enable the team to adapt and evolve the
model independently, bypassing restrictions and limitations
presented by external dependencies. Cultivating our own LLM
will also entail establishing a hosting solution that allows us
to manage and deploy the model directly. Hosting our model
would enhance the system’s performance, offer increased
scalability, and ensure that the privacy and security of user
data are upheld to the highest standards.

In parallel with the development of an in-house language
model, the expansion of the API database is another key area
for growth. The intent is to curate a wider variety of APIs,
diversifying the range of capabilities available to NEXUS.
Special attention will be paid to the selection of APIs, ensuring
each inclusion has a potential use within the virtual assistant
context, hence eliminating redundancy and optimizing the sys-
tem’s performance. This strategy entails a meticulous vetting
process that filters out duplicate or irrelevant APIs, promoting
a streamlined and efficient collection that champion’s utility.
Our goal is to incorporate APIs that not only respond to user
queries but do so with precision and relevance, taking into
account the diverse and evolving demands of virtual assistant
users. The continuous evolution of NEXUS will involve not
only augmenting the number of APIs but also refining the
integration process to foster a seamless user experience. As
we proceed, our vision encompasses a NEXUS that is more
robust, versatile, and tailored to the nuances of modern-day
virtual assistance. Each step toward this trajectory stands as a
commitment to innovation and excellence in our project.

REFERENCES

[1] Patil, S. G., Zhang, T., Wang, X., and Gonzalez, J. E. (2023, May
24). Gorilla: Large Language Model Connected with Massive APIs.
Retrieved from https://arxiv.org/abs/2305.15334

[2] Qin, Y. et al. (2023, October 3). ToolLLM: Facilitating Large Lan-
guage Models to Master 16000+ Real-world APIs. Retrieved from
https://arxiv.org/abs/2307.16789

[3] Vaswani, A. et al. (2017, June 12). Attention Is All You Need. Retrieved
from https://arxiv.org/abs/1706.03762

[4] Ouyang, L. et al. (2022, March). Training language models
to follow instructions with human feedback. Retrieved from
https://arxiv.org/abs/2203.02155

