
FSU panama city

EEL 4746 Microprocessor System Design

Performed by:

Tyler Coltrane, Piper Ellsworth, Armis Sunday, and Jason Lee

Instructor: Dr. Manzak

April 21st, 2022

Sequence Learning in Quest
Space Filler Space Filler

Abstract

SLIQ (Supervised Learning in Quest) is a high speed and flexible decision tree classifier
developed by IBM Almaden Research Center in 1996 that allows us to sort and interpret data.
Data classification is a bottleneck in data mining due to other methods' inability to scale with
large data sets spread across different classifications. SLIQ can reduce costs using efficient and
pre-sorting decision trees to sort through larger data sets while accounting for differences in data
types. This maintains competitive accuracy with the ability to scale and interpret larger data sets
with multiple classes and attributes.

Introduction

SLIQ is a decision tree algorithm. This means it splits nodes into two or more sub-nodes based
on some criteria. As more sub-nodes are created the bucketed data’s homogeneity increases, the
data becomes more similar, and the purity of the node increases with respect to the target
variable. SLIQ improves on this framework by aiming to reduce the diversity of the tree at each
split. This allows SLIQ to sort through data more efficiently and cost-effectively over large data
sets with different data types[1].

SLIQ uses a training set and a Gini split to prepare the data for the decision tree algorithm. These
equations are what make SLIQ a,” supervised learning,” algorithms as the data is pre-sorted and
pruned. For training set L with n distinct classes the equation is

SLIQ is an improvement upon existing decision tree algorithms. SLIQ’s advantages are based in
its pre-sorting of data, no need for data normalization, scales well with data size, and it can
handle a variety of data types across many features and classifications. The downsides to SLIQ
lie in its complexity, time, and cost. SLIQ can very quickly become very complex for large data
sets, requires more time to train the model, is more expensive and complex than a normal
decision tree algorithm, and cannot be applied to regressions or predictive modeling [2].

The application of SLIQ can be used in any field where data mining is prevalent. Specifically,
SLIQ is being used today in the deregulated power market. The SLIQ algorithm allows us to
mine data in terms of cost of energy for purchase and sale to meet load demands and decrease the
cost of energy usage across any industry [4].

Existing Work

Throughout the research of SLIQ, researchers found that there is a lack of studies about the
algorithm but were unable to find it’s first inventors. From the IEEE Xplore library, researchers
were able to find a paper from 1996 written by three engineers: Manish Mehta, Rakesh Agrawal,
and Jorma Rissanen. These engineers proposed that SLIQ could solve an important problem at
the time, data mining. The algorithm for SLIQ creates a decision tree that can handle both
numeric and categorial attributes, which uses presorting techniques and optimizations to create
the ideal results[4]. These engineers suggested that one could use the algorithm to create
inexpensive, compact, and accurate trees.

Within the first research paper reveiwed, the researchers reviewed previous studies conducted on
classification, but found that for large data sets, they don't scale well. As a solution, they
proposed a decision- tree classifier, SLIQ, designed specifically for scalability.

Within the second research paper reveiewed, researchers found that the prediction with the
greatest separating power correlates to a split in a decision tree. The optimal split creates nodes
where a single class dominates the most[5]. The predictor's power to separate data may be
calculated in a variety of ways. The Gini coefficient of inequality is one of the most well-known
methodologies.

Within the second research paper reveiewed, the researchers used data mining for an easy tool to
analyze historical rainfall data, it allowed them to measure valuable patterns within a short
period of time. With an average accuracy of 74.92 percent, the SLIQ decision tree algorithm was
able to estimate an accurate precipitation forecast[6].

In 2005, through the International Power Engineering Conference, three engineers, named
Hongwen Yan, Rui Ma, and Xiaojiao Tong proposed using SLIQ to build a framework for a
competitive bidding assessment in a deregulated power market. They suggested that the bidding

system using the SLIQ algorithm could be consistent with the features of the electric energy
production and consummation, this would be more convenient for operating the power
markets[7].

Throughout the research of this algorithm, researchers only found software implementations.
Where SLIQ is used to make decisions based on a set of data for a specific use. Of these software
implementations, there are examples algorithms of precipitation prediction, bidding, or sorting
data. There are also algorithms that identifies households that are most likely to respond to a
promotion of a product, such as a new banking service[5]. Researchers have found that the SLIQ
decision tree, superior to other algorithms, can be built fast and scalable for larger data sets.

Example
- Algorithm

SLIQ is a decision tree classifier that can improve learning time for the classifier without any
loss in accuracy while this technique allows performing on the larger training data. SLIQ uses
Gini Index to determine the best split for each node [8]. SLIQ Algorithm can be divided into 3
steps, pre-sorting the sample, processing evaluation on splits, and updating the class list [4].

Once the data is sorted, it can process evaluation on splits by assuming the split of the first node
and evaluate each histogram. (Gini index will be used during this step but for this example since
attribute, age and salary do not have predictive power since they can be any number.)

Finally the class list can be updated. Traverse the training data through the decision tree and
replace the node with the new node. These steps can be repeated until each of the leaf nodes
becomes a pure node, meaning that the node only contains one class.

- Example
- Question

The question for the example given is whether an individual will be chosen to receive a credit
card. The decision tree shows the results using the given data.

- Solution

Determine the Gini index using the equation and the histogram made based upon the data of the
attributes. Where P is the value of the attribute obtained from the sorted data, A is true, B is fails,
L is branch left, R is branch right, and a and b is the number of the elements that fall into the
criteria of the table.

Using the equation, Gini index for the overall training data is 1 – (5/10)2 - (5/10)2 = 0.5.

Gini index for all the attributes that are sorted are 0 because their new data cannot be predict,
meaning that they have to predictive power.

Gini index for the marriage status attribute is

0.5 [1 – (3/5)2 – (2/5)2] + 0.5 [1 – (2/5)2 – (3/5)2] = 0.48

Since the table created by within the marriage status attribute is:

From the Gini indexes found, all the other attributes have zero
Gini index but marriage status, the marriage status attribute
must be used to split the data from the first node.

Giving a decision tree and two other histograms as:

From the N2 and N3, any of the attribute can be take in place to split the node since they all had
the zero Gini index. Since it is obvious that the credit score matters the most towards the
question, use the credit score attribute to split the N2 and N3.

The N2 has been split nicely
into N4 and N5 but the N3 has
not. So repeat the step with
different attribute on N6.

The steps needs to be repeated until each of the
leaf node becomes a pure node, meaning that the
node only contains one result.

On the Node 6 and Node 7 debt in thousands attribute can be used for splitting the results.

With the finalized decision tree update the training data by running the data through the decision
tree and replace the node with rather the credit card can be issued or not.

Methodology
As seen in the previous example, four students created a program in order to determine whether
or not a person is eligible to receive a credit card based on a set of data. The factors include the
person’s current credit score, debt, marital status, number of children, income, and age.

Below are two block diagrams one labeled ALU and the other Memory. The ALU diagram was
derived from the code which was written by the team of students. Within the ALU, the first box
is the inputs. The only inputs that were used in the program were the person’s credit score, debt,
and marital status. As the students dove into the test data, they discovered some of the
information in the table did not have an impact on whether a person received a credit card. Since
these other factors were not significant, they were pruned off of the decision tree which was used
to write the code. Due to them being pruned, there are only three inputs into the program. The
insignificant factors include number of children, income, and age. The second box in the ALU
labeled outputs includes only one output. The only thing the program is outputting is a yes or no
of whether the person should get a credit card or not. Yes is a 01, and no is a 00. The output can
be seen by accessing the memory. The next box inside of the ALU contains the registers. The
students used 10 registers in their code. The first three registers r0, r1, and r2 were used to hold
the credit score, debt, and married arrays. Register 3 was used to keep track of the index for each
array. Registers 4, 5, and 6 were used to hold specific elements pulled out of the arrays. R7 was
used to store the output at the memory location 0x20000000. Registers 8 and 9 were set as 0 and
1 to represent no and yes as outputs in the memory. In the section of the ALU titles arithmetic
there is only the addition function. The ADD function was used to update the index in register 3.
No other arithmetic functions were used. The last ALU box holds all the comparisons from the
code. The code contains 11 different comparison functions. Many of them appear multiple times
in the code. They proved to be very useful for SLIQ and its decision tree algorithm. Other types
of functions performed in the ALU include logic functions. The block diagram does not contain
any logic functions because the students did not use any.

The figure below is the block diagram of the memory. The memory address 0x20000000
contains all of the output values in the form of ones and zeros. The array for the credit score is
stored in the memory starting at 0x0800019C. Starting at the memory address 0x080001C4 the
array is holding the data containing the people’s debt. The marital status array is being stored at
the address 0x08001EC. The rest of the code is being stored at the memory address 0x08000000.

Though the way the code was written was great, there are some other ways it could have been
written. One thing the students could have done differently was implement the Gini index into
the code. One of the students calculated the Gini index by hand to create the decision tree that
the code was based off of. As an alternative, the students could have incorporated the Gini index
into the program along with all of the data from the table and let the program decide what was
more important. However there are issues with this option. To start, the current program is
already using 10 registers, and just by including the three other arrays as inputs would require 13
registers. Then they would probably need another two or three registers just to calculate the Gini
index. The total number of registers for this method would be about 16, and assembly does not
even have that many available registers. In addition to that, the program would probably end up

being at least triple the size of the current program making it extremely unlikely for the students
to be able to complete in the allotted time. Another alternative solution to the current program
would be to create an array for each person as opposed to each category. This would allow less
loops to have to be used within the code which would ultimately shorten the code and make it
easier to read, but there are quite a few issues with this route. For this particular example, there
are ten people which would occupy ten registers as opposed to three before. For a larger data set,
even more registers would need to be occupied and assembly just does not have enough to be
able to do that.

This design by the students does have some limitations however. Since they used such a small
data set to create the program, using very large amounts of data may cause other aspects to be
more influential in the decision process than the ones they discovered to be. The larger data set
may cause some of the pruned branches to become more important and useful. For a larger data
set, the code would become much more complex than it is right now. Depending on how large
the data set becomes, it may be easier to figure out how to add the calculation of the Gini index
into the code, so that it does not have to be performed by hand.

While the students were actually working on the project, Piper did the full methodology while
Jason, Armis, and Tyler wrote the code. For the most part they all wrote the code together, but
there were some portions where they worked individually. The code is full of loops. The loop
called “loopTyler” is the part Tyler coded on his own. The loop called “loopJason” is the part
Jason did on his own, and the loop called “loopArmis” is the part Armis did on his own.

Results
Within the assembly code of the SLIQ algorithm, students found it was easier to assign each
person applying for the credit card a specific number. This specific number would allign to their
data in the different arrays for the inputs, as seen in the assembly code. With the same manner,
the final answer of yes or no for the person applying will be provided as an array located in the
memory. Decoding the array for the results, a “01” would clarify that yes this person can have
the credit card as for a “00” would clarify that no this person can not have a credit card. Within
the assembly code, the solution could easily be scaled larger for more data to be input and more
precise decisions. Alternatively, their code could have been done with the opposite branch
comparisons. Where a BLT is, it could be replaced with a BGE and have the code aligned to
match the procedure of decision tree. Other solutions would be longer and more complex without
the compare branch functions. Students took this complexity in consideration and decided that
using these branches to our advantage would have the best results.

Conclusion

In this project, students successfully used the supervised learning in quest (SLIQ) algorithm to
determine whether or not a person should receive a credit card. They used a data set and Gini to
determine which information was most important and which was not. They were then able to
create a decision tree with multiple branches. Afterwards, they used the decision tree to serve as
a guide to the coding process. Like how a decision tree makes many comparisons, the program
includes many different comparison functions. From this project, the students learned the history
behind SLIQ and decision tree algorithms, they also used team work and improved their
troubleshooting skills when things went wrong in the coding process. For future work, the
students would alter their code so that it could handle larger sets of data like SLIQ is designed
for. They would also like to implement their design onto hardware where the board could receive
inputs and give back outputs.

References

[1] Huacheng Zhang, Wu Xie, "Improvement of SLIQ Algorithm and its Application in
Evaluation", Genetic and Evolutionary Computing 2009. WGEC '09. 3rd International
Conference on, pp. 77-80, 2009.

[2] Xie Wu, Huacheng Zhang, Huimin Zhang, "Study of comprehensive evaluation method
of undergraduates based on data mining", Intelligent Computing and Integrated Systems
(ICISS) 2010 International Conference on, pp. 541-543, 2010.

[3] Hongwen Yan, Rui Ma and Xiaojiao Tong, "SLIQ in data mining and application in the
generation unit's bidding decision system of electricity market," 2005 International Power
Engineering

[4] Mehta, M., Agrawal, R., Rissanen, J. (1996). SLIQ: A fast scalable classifier for data
mining. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds) Advances in Database
Technology — EDBT '96. EDBT 1996. Lecture Notes in Computer Science, vol 1057.
Springer, Berlin, Heidelberg.

[5] S. Sivagama Sundhari, "A knowledge discovery using decision tree by Gini coefficient,"
2011 International Conference on Business, Engineering and Industrial Applications,
2011, pp. 232-235.

[6] N. Prasad, P. K. Reddy and M. M. Naidu, "A Novel Decision Tree Approach for the
Prediction of Precipitation Using Entropy in SLIQ," 2013 UKSim 15th International
Conference on Computer Modelling and Simulation, 2013, pp. 209-217.

[7] Hongwen Yan, Rui Ma and Xiaojiao Tong, "SLIQ in data mining and application in the
generation unit's bidding decision system of electricity market," 2005 International Power
Engineering Conference, 2005, pp. 1-137.

[8] B. Chandra and V. P. Paul, "A Robust Algorithm for Classification Using Decision
Trees," 2006 IEEE Conference on Cybernetics and Intelligent Systems, 2006, pp. 1-5

Appendix

Assembly Code

Simulation Results

- Memory

- Register

- Data memories
- Credit score - Debt - Marriage status

- Full view

